# Anyplex<sup>™</sup>II HPV HR Detection

(Cat. No. HP7E00X, HP10380Z)

Anyplex<sup>™</sup> II PCR System for detection of human papillomavirus - 14 high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68) from liquid-based cytology, cervical swab and self-collected vaginal specimens.

For use with

1. CFX96<sup>™</sup> Real-time PCR Detection System (CFX Manager<sup>™</sup> Software-IVD v1.6)

2. CFX96<sup>™</sup> Dx System (CFX Manager<sup>™</sup> Dx Software v3.1)

# CE





Seegene Inc. Taewon Bldg., 91 Ogeum-ro, Songpa-gu, Seoul, Republic of Korea 05548



Medical Technology Promedt Consulting GmbH Altenhofstrasse 80, D-66386 St.Ingbert, Germany

Not available in the U.S.



# TABLE OF CONTENTS

| NOTICES                                              | 3  |
|------------------------------------------------------|----|
| INTENDED USE                                         | 5  |
| PRINCIPLES AND PROCEDURE OVERVIEW                    | 6  |
| BACKGROUND INFORMATION                               | 8  |
| REAGENTS                                             | 9  |
| STORAGE AND HANDLING                                 | 11 |
| MATERIALS REQUIRED BUT NOT PROVIDED                  | 11 |
| PROTOCOL                                             | 12 |
| REAL-TIME PCR INSTRUMENT SET UP AND RESULTS ANALYSIS | 23 |
| RESULTS                                              | 55 |
| TROUBLESHOOTINGS                                     | 60 |
| PERFORMANCE                                          | 62 |
| REFERENCES                                           | 66 |
| KEY TO SYMBOLS                                       | 67 |
| ORDERING INFORMATION                                 | 68 |



# NOTICES

- For *in vitro* diagnostic use only.
- If this product is used with Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS and Seegene STARlet, it provides a maximum of 5 separate runs.
- AIOS combines Seegene STARlet sold by Seegene with real-time PCR equipment (CFX96 Dx, Manufacturer: Bio-Rad) and plate sealer (manufacturer: SAMICK THK) to form an automated linkage structure of nucleic acid extraction to PCR.
- This test has been validated for the following specimen types: cervical swab, selfcollected vaginal specimen and liquid-based cytology specimens. This test has not been validated for any other types of specimens.
- Store DNA samples at -70°C until use and keep on ice during use.
- Sensitivity of the assay may decrease if samples are repeatedly frozen/thawed or stored for a longer period of time.
- Workflow in the laboratory should proceed in a unidirectional manner.
- Reliability of the results depends on adequate specimen collection, transport, storage and processing procedure.
- Wear disposable gloves and change them before entering different areas. Change gloves immediately if contaminated or treat them with DNA decontaminating reagent.
- Supplies and equipment must be dedicated to working areas and should not be moved from one area to another.
- Do not pipette by mouth.
- Do not eat, drink or smoke in laboratory work areas. Wear disposable powder-free gloves, laboratory coats and eye protections when handling specimens and reagents. Wash hands thoroughly after handling specimens and test reagents.
- Avoid contamination of reagents when removing aliquots from reagent tubes. The use of sterile aerosol resistant disposable pipette tips is recommended.
- Do not pool reagents from different lots or from different tubes of the same lot.
- Do not use the product after its expiry date.
- Do not reuse all disposable items.
- Use screw-capped tubes and prevents any potential splashing or cross-contamination of specimens during preparations.
- Please be careful not to contaminate reagents with extracted nucleic acids, PCR products, and positive control. To prevent the contamination of reagents, the use of filter tips is recommended.

- Use separated and segregated working areas for each experiment.
- To avoid contamination of working areas with amplified products, open PCR reaction tubes or strips only at designated working areas after amplification.
- Store positive materials separated from kit's reagents.
- Laboratory safety procedures (refer to Biosafety in Microbiological and Biomedical Laboratories & CLSI Documents) must be taken when handling specimens. Thoroughly clean and disinfect all work surfaces with 0.5% sodium hypochlorite (in de-ionized or distilled water). Product components (product residuals, packaging) can be considered as laboratory waste. Dispose of unused reagents and waste in accordance with applicable federal, state, and local regulations.
- Expiry date is 13 months at ≤-20°C from the date of manufacture. Please refer to label for final expiry date.
- Seegene NIMBUS and Seegene STARlet are the same equipment as the Microlab NIMBUS
   IVD and Microlab STARlet IVD, although the manufacturer is different. Since there are no hardware changes on the device, the test results are the same.
- The brand name of "CFX96<sup>™</sup> Real-time PCR Detection System-IVD" is changed to "CFX96<sup>™</sup> Dx system". Since there are no hardware changes to the systems, it is expected to obtain the same results from both systems.
- "CFX Manager™ Dx Software v3.1" is an upgrade version of "CFX Manager™ Software-IVD v1.6". The upgraded software includes enhancements to the "Run" menu. These enhancements do not impact the results of data analysis; therefore, results will be the same.
- This kit is intended to aid in the differential diagnosis of target pathogen infections; Human papillomaviruses.



### **INTENDED USE**

The Anyplex<sup>™</sup>II HPV HR Detection is a qualitative *in vitro* test for the detection of 14 high risk HPV types in liquid-based cytology, cervical swab and self-collected vaginal specimens. This assay specifically identifies not only HPV 16 and HPV 18 but also other 12 individual high risk HPV genotypes (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68) at clinically relevant infection levels.

The Anyplex<sup>™</sup> II HPV HR Detection is indicated:

a) To screen patients with ASC-US (atypical squamous cells of undetermined significance) cervical cytology results to determine the need for referral to colposcopy. The results of this test are not intended to prevent women from proceeding to colposcopy.

b) To screen patients with ASC-US cervical cytology results to assess the presence or absence of HPV 16, HPV 18 and other 12 individual high risk HPV genotypes (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68).

c) To be used with cervical cytology to adjunctively screen to assess the presence or absence of HPV 16, HPV 18 and other 12 individual high risk HPV genotypes (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68).

d) To be used as a primary screening test to identify women at increased risk for the development of cervical cancer or the presence of high-grade disease.

e) To be used as a primary screening test to assess the presence or absence of HPV 16, HPV 18 and other 12 individual high risk HPV genotypes (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68).

The result from the Anyplex<sup>™</sup> II HPV HR Detection, together with the physician's assessment of cytology history, other risk factors, and professional guidelines, may be used to guide patient management.

#### PRINCIPLES AND PROCEDURE OVERVIEW

#### 1. Principles

The Anyplex<sup>™</sup> II HPV HR Detection represents Seegene's proprietary technologies and is based on a TOCE<sup>™</sup> technology which makes it possible to detect multi-pathogens in a single fluorescence channel on real-time PCR instruments.

In current melting curve analysis, temperature differences are often observed among DNAs that have high sequence variation, resulting in issues the field of clinical diagnostics where accurate and reproducible test results are critical. However, TOCE<sup>™</sup> technology is designated not to be affected by sequence variations; therefore, it guarantees consistent Tm values.

The Anyplex<sup>™</sup> II HPV HR Detection can perform multiplex examination by either End point-CMTA (End point-Catcher Melting Temperature Analysis) or cyclic-CMTA (cyclic-Catcher Melting Temperature Analysis) method. cyclic-CMTA method which represents a new class of molecular tests can discriminate major pathogen in the co-infected samples. The Anyplex<sup>™</sup> II HPV HR Detection is a multiplex real-time PCR assay that permits the simultaneous amplification, detection and differentiation of target nucleic acids of 14 high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68) as well as Internal Control (IC).

In PCR, efficiency can be reduced by inhibitors that may be present in the clinical specimens. An Internal Control(IC) is incorporated into the product as an endogenous whole process control in order to monitor nucleic acid isolation, and to check for possible PCR inhibition. The IC is co-amplified with the target nucleic acids within the clinical specimens. The Anyplex<sup>™</sup> II HPV HR Detection uses a human house-keeping gene as an endogenous IC which can ensure purification of DNA, verification of PCR reaction and clarification of cell adequacy from each specimen.

The Uracil-DNA glycosylase (UDG)-dUTP system is employed in the Anyplex<sup>™</sup> II HPV HR Detection. The UDG-dUTP system is commonly used when performing PCR to eliminate amplicon carry-over using UDG excises uracil residues from DNA by cleaving the N-glycosylic bond.



# 2. Procedure Overview



## **BACKGROUND INFORMATION**

Human Papilloma Virus (HPV) infection is linked with cervical cancer. HPV can be divided into "high-risk (HR)" and "low-risk (LR)" groups on the basis of their association with cervical lesions. Therefore, it is very important to know which type of HPV is infected in patients to prevent cancer development and transmission of disease. Currently, commercially available major products to diagnose HPV are based on probe-hybridization method to detect and/or genotype HPV. However, main defects of the probe-hybridization based methods are high false positive rate due to cross-reactivity between probes and various kinds of viral DNA or PCR amplicons used for hybridization. Here we are introducing an innovative HPV detection/genotyping assay system which amplifies only specific targets without any cross reactivity and is automated in detection using real-time PCR method. Eventually the Anyplex<sup>™</sup> II HPV HR Detection only specifically detects true HPV and accurately genotypes them. It also contains endogenous Internal Control to check any inhibition that might occur during PCR reaction.

Cervical cancer, which progresses from the precancerous stage to invasive cancer, has 7-20 years of precancerous stage. In addition, high-risk HPV group has been reported to be associated with the development of cervical cancer; especially, HPV16 and HPV18 about 70% of cervical cancer cases. Therefore, early diagnosis using HPV DNA testing is necessary to prevent cancer progression. Anyplex<sup>™</sup> II HPV HR Detection can identify 14 high-risk HPV types including HPV16 and 18 at the same time.



# REAGENTS

The reagents contained in one kit are sufficient for 100 reactions.

| Order information ( | REF | HP7E00X) |
|---------------------|-----|----------|
|---------------------|-----|----------|

| Anyplex <sup>™</sup> II HPV HR Detection |                  |          |                                                                                                           |  |
|------------------------------------------|------------------|----------|-----------------------------------------------------------------------------------------------------------|--|
| Symbols                                  | Contents         | Volume   | Description                                                                                               |  |
| PRIMER                                   | 4X HPV HR TOM    | 500 µL   | TOCE Oligo Mix (TOM):<br>- Amplification and detection reagents                                           |  |
| PREMIX                                   | EM1              | 500 µL   | <ul> <li>DNA polymerase</li> <li>Uracil-DNA glycosylase (UDG)</li> <li>Buffer containing dNTPs</li> </ul> |  |
| CONTROL +                                | HPV HR PC1       | 50 µL    | Positive Control(PC) :<br>- Mixture of pathogen clones                                                    |  |
| CONTROL +                                | HPV HR PC2       | 50 µL    | Positive Control(PC) :<br>- Mixture of pathogen clones                                                    |  |
| CONTROL +                                | HPV HR PC3       | 50 µL    | Positive Control(PC) :<br>- Mixture of pathogen clones                                                    |  |
| WATER                                    | RNase-free Water | 1,000 µL | Ultrapure quality, PCR-grade                                                                              |  |
| Ĩ                                        | User manual      |          |                                                                                                           |  |

# Accessory product – analysis software

# Seegene Viewer \*

\*The analysis software is provided by Seegene Inc. or regional manager. Please use Seegene Viewer beyond V3.



The reagents contained in one kit are sufficient for 25 reactions.

Order information ( **REF** HP10380Z)

| Anyplex <sup>™</sup> II HPV HR Detection |                  |          |                                                                                                           |  |
|------------------------------------------|------------------|----------|-----------------------------------------------------------------------------------------------------------|--|
| Symbols                                  | Contents         | Volume   | Description                                                                                               |  |
| PRIMER                                   | 4X HPV HR TOM    | 125 µL   | TOCE Oligo Mix (TOM):<br>- Amplification and detection reagents                                           |  |
| PREMIX                                   | EM1              | 125 µL   | <ul> <li>DNA polymerase</li> <li>Uracil-DNA glycosylase (UDG)</li> <li>Buffer containing dNTPs</li> </ul> |  |
| CONTROL +                                | HPV HR PC1       | 50 µL    | Positive Control(PC) :<br>- Mixture of pathogen clones                                                    |  |
| CONTROL +                                | HPV HR PC2       | 50 µL    | Positive Control(PC) :<br>- Mixture of pathogen clones                                                    |  |
| CONTROL +                                | HPV HR PC3       | 50 µL    | Positive Control(PC) :<br>- Mixture of pathogen clones                                                    |  |
| WATER                                    | RNase-free Water | 1,000 µL | Ultrapure quality, PCR-grade                                                                              |  |
| Ĩ                                        | User manual      |          |                                                                                                           |  |

# Accessory product – analysis software

# Seegene Viewer \*

\*The analysis software is provided by Seegene Inc. or regional manager. Please use Seegene Viewer beyond V3.



## STORAGE AND HANDLING

All components of the Anyplex<sup>TM</sup> II HPV HR Detection should be stored at  $\leq$ -20°C. All components are stable under recommended storage conditions until the expiry date stated on the label. The performance of kit components is not affected for up to 5 freezing and thawing. If the reagents are to be used only intermittently, they should be frozen in aliquots.

#### MATERIALS REQUIRED BUT NOT PROVIDED

- Disposable powder free gloves (latex or nitrile)
- Pipettes (adjustable) and sterile pipette tips
- 1.5 mL microcentrifuge tube
- Nucleic acid extraction kit (see Nucleic Acid Extraction)
- Proteinase K (For SEEPREP12<sup>TM</sup>, Cat. No.P4850, SIGMA)
- Ice maker
- Desktop centrifuge
- Vortex mixer
- CFX96<sup>TM</sup> Real-time PCR Detection system (Bio-Rad)
- CFX96<sup>TM</sup> Dx System (Bio-Rad)
- Optical Flat 8-Cap Strips (Cat. No. TCS0803, Bio-Rad)
- Low-Profile 0.2 mL 8-Tube Strips without Caps (white color, Cat. No. TLS0851, Bio-Rad)
- Hard-Shell<sup>®</sup> 96-Well PCR Plates, low profile, thin wall, skirted, white/white (Cat. No. HSP9655, Bio-Rad)
- Hard-Shell<sup>®</sup> 96-Well PCR Plates, low profile, thin wall, skirted, white/white, barcoded (Cat. No. HSP9955, Bio-Rad)
- Vial Cap Management System (Cat. No. 6600532-01, Hamilton)
- AIOS (Cat. No. SG72100, Seegene)
- Pierceable cap (Cat. No. 922119, SPL) (for AIOS use only)
- Permanent Clear Heat Seal (Cat. No. 1814035, Bio-Rad)\*
- PX1 PCR plate sealer (auto-sealer, Cat. No. 181-4000, Bio-Rad)\*
- Clean bench

\* Make sure to use the heat seal and the plate sealer listed above together.



# PROTOCOL

#### 1. Specimen Collection, Storage, and Transport

**Note**: All samples have to be treated as potentially infectious materials. Only those sample materials are permitted, which are collected, stored and transported attending strictly the following rules and instructions :

<u>Liquid-based cytology specimen</u> <u>Cervical swab specimen</u> <u>Self-collected vaginal specimen</u>

**Note**: To ensure a high sample quality, the specimens should be transported as fast as possible. The specimens have to be transported at the indicated temperature conditions.

#### A. Specimen Collection

#### Liquid-based cytology specimen

 Follow the manufacturer's instructions for collecting cervical cell specimens into ThinPrep<sup>®</sup> (HOLOGIC, USA) or SurePath<sup>™</sup> (Becton-Dickinson, USA) or CellPreserv (Kolplast, Brazil) media.

#### Cervical swab specimen

For the collection of cervical swab specimen, please use following materials :

- Cervical swabs can be collected and transported in the following mediums :
  - eNAT® (COPAN, Italia)

| Cervical specimen collection kit            | Manufacturer | Cat. No. |
|---------------------------------------------|--------------|----------|
| eNAT <sup>®</sup> PM 2ML L-SHAPE APPLICATOR | COPAN        | 606CS01L |

- Leave the swab in the transport medium. Close and label the sample container. Stick closely to the instructions given for storage and transport.
- Please follow a recommended protocol to collect columnar and squamous epithelium cells after removal of the cervical mucus.



### Self-collected vaginal specimen

- For the collection of self-collected vaginal specimen, please use following material:
  - Rovers<sup>®</sup> Evalyn<sup>®</sup> Brush (Rovers Medical Devices B.V., Netherlands)
  - Qvintip<sup>® (</sup>Aprovix AB, Sweden)

| Self-sampling device                          | Manufacturer                | Cat. No.  |
|-----------------------------------------------|-----------------------------|-----------|
| Rovers <sup>®</sup> Evalyn <sup>®</sup> Brush | Rovers Medical Devices B.V. | 380500131 |
| Qvintip®                                      | Aprovix AB                  | 10-002    |

- Self-collected vaginal specimen can be collected and stored in ThinPrep<sup>®</sup> PreservCyt<sup>®</sup> Solution.
- Follow each manufacturer's instructions of sampling device and transport media for collection and storage of vaginal cell specimens.

# B. Specimen Storage & Transport

| Snooimon                 | Modia                  | Storage & Transport     |           | Nata                                                                  |
|--------------------------|------------------------|-------------------------|-----------|-----------------------------------------------------------------------|
| Specimen                 | Media                  | Temp.                   | Duration* | Note                                                                  |
| Cervical<br>swab         | eNAT®                  |                         |           |                                                                       |
|                          | ThinPrep®              |                         |           | - Performance may be affected by                                      |
| Liquid-based<br>cytology | SurePath™              | 2~8℃                    | 00 dava   | prolonged storage of specimens.                                       |
|                          | CellPreserv            | & Room<br>Temperature** | 90 days   | - Specimens should also adhere to local and national instructions for |
| Self-                    |                        |                         |           | transport of pathogenic material.                                     |
| collected                | ThinDron®              |                         |           |                                                                       |
| vaginal                  | rinn <del>-</del> rep° |                         |           |                                                                       |
| specimen                 |                        |                         |           |                                                                       |

\* Duration: Specimen collected from the period prior to the test including specimen storage and transport prior to the test.

\*\* Optimum temperature for transport is 2~25°C.



## 2. Nucleic Acid Extraction

Various manufacturers offer nucleic acid extraction kits. Use right amount of sample according to the protocol in use. The following extraction kits have been validated for use with this kit.

### A. Pre-treatment of Liquid-based cytology specimen

- Equilibrate samples to room temperature (19~25°C).
- Centrifuge 1 mL of liquid-based cytology specimen for 15 minutes at 15,000 x g (13,000 rpm).
- The supernatant has to be discarded. Afterwards, the recommend volume (200~300 µL, See Recommended Vol. of 2-C, D) should be resuspended in 1X PBS by vortexing thoroughly to redissolve.

**Note:** Process pre-treatment step using lysis buffer in extraction kit not 1X PBS if the samples are collected in SurePath<sup>™</sup> medium and would be analyzed with Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS or Seegene STARlet.

**Note:** ThinPrep<sup>®</sup> and SurePath<sup>™</sup> media can be processed without pre-treatment when using Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS or Seegene STARlet.

Note: CellPreserv and self-collected vaginal specimen do not require a pre-treatment step.

**Note:** SurePath<sup>™</sup> and CellPreserv have not been validated with STARMag 96 X 4 Viral DNA/RNA 200 C Kit.

**Note:** CellPreserv has not been validated with STARMag 96 ProPrep C (Plate Type) and STARMag 96 ProPrep C (Tube Type)

• Follow the manufacturer's protocol.

#### B. Cervical swab specimen

- Equilibrate samples to room temperature (19~25°C).
- For cervical swab specimens which contain a swab in the transport media specimens should be mixed by vortexing.
- The caps from specimen tubes have to be removed carefully to avoid contaminations. Any excess mucus in the specimen should be removed at this time by collecting it on the swab. Any residual liquid from the mucus and the swab should then be expressed by pressing the swab against the slide of the tube. Finally the swab and the mucus should be removed and discarded.
- eNAT<sup>®</sup> specimens may be processed directly out of their primary container.



### C. Manual Nucleic Acid Extraction Kits

**Note:** Please use the recommended specimen and elution volumes as indicated below. For all others, refer to the manufacturer's protocol.

| Extraction Kit                                    | Manufacturer | Cat. No.             | Recommended Vol.                   |
|---------------------------------------------------|--------------|----------------------|------------------------------------|
| QIAamp <sup>®</sup> DNA Mini Kit*                 | QIAGEN       | 51304                | Specimen: 200 µL<br>Elution: 50 µL |
| Ribo_spin vRD**<br>(Viral RNA/DNA Extraction Kit) | GeneAll      | 302-150<br>SG1701*** | Specimen: 200 µL<br>Elution: 50 µL |

\* Process lysis step using 180 μL of ATL buffer instead of AL buffer in case of SurePath<sup>™</sup> media.

\*\* Ribo\_spin vRD kit is not compatible with SurePath<sup>™</sup> media.

\*\*\* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

## D. Automated Extraction Systems

**Note:** Please use the recommended volumes of specimen and elution as indicated below. For others, refer to the manufacturer's protocol.

#### D-1. Microlab NIMBUS IVD

Note: See Microlab NIMBUS IVD operation manual.

| Automated Extraction Systems | Manufacturer | Cat. No.         | Recommended Vol. |                  |
|------------------------------|--------------|------------------|------------------|------------------|
| Microlab NIMBUS IVD          | Hamilton     | 65415-02*        | -                |                  |
| STARMag 96 X 4               | Soogono      | e 744300.4.UC384 | Specimen: 300 µL |                  |
| Universal Cartridge Kit      | Seegene      |                  | Elution: 100 µL  |                  |
| STARMag 96 X 4               | Saagana      | Sectors 52000120 | EX00013C         | Specimen: 300 µL |
| Viral DNA/RNA 200 C Kit**    | Seegene      | EX00013C         | Elution: 100 µL  |                  |

\* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

\*\* SurePath<sup>™</sup> and CellPreserv have not been validated with STARMag 96 X 4 Viral DNA/RNA 200 C Kit.



## D-2. Microlab STARlet IVD

Option: Pre-analytic System (See Vial Cap Management System operation manual)

| Automated Pre-analytic System | Manufacturer | Cat. No.    |
|-------------------------------|--------------|-------------|
| Vial Cap Management System    | Hamilton     | 6600532-01* |

\* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

Note: See Microlab STARlet IVD operation manual.

| Automated Extraction Systems | Manufacturer          | Cat. No.         | Recommended Vol. |
|------------------------------|-----------------------|------------------|------------------|
| Microlab STARlet IVD         | Hamilton              | 173000-075*      | -                |
| STARMag 96 X 4               | Sectors 744200 4 UC29 | 744200 4 110284  | Specimen: 300 µL |
| Universal Cartridge Kit      | Seegene               | ; 744500.4.00504 | Elution: 100 μL  |
| STARMag 96 X 4               | Saagana               | EX00012C         | Specimen: 300 µL |
| Viral DNA/RNA 200 C Kit**    | Seegene               | EX00013C         | Elution: 100 μL  |

\* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

\*\* SurePath<sup>™</sup> and CellPreserv have not been validated with STARMag 96 X 4 Viral DNA/RNA 200 C Kit.

## D-3. Seegene NIMBUS

Note: See Seegene NIMBUS operation manual.

| Automated Extraction System | Manufacturer | Cat. No.  | Recommended Vol. |
|-----------------------------|--------------|-----------|------------------|
| Seegene NIMBUS              | Seegene      | 65415-03  | -                |
| STARMag 96 X 4              | Soogono      | 744300.4. | Specimen: 300 μL |
| Universal Cartridge Kit     | Seegene      | UC384     | Elution: 100 μL  |
| STARMag 96 X 4              | Soogono      | EX00012C  | Specimen: 300 µL |
| Viral DNA/RNA 200 C Kit*    | Seegene      | EX00013C  | Elution: 100 μL  |

\* SurePath<sup>™</sup> and CellPreserv have not been validated with STARMag 96 X 4 Viral DNA/RNA 200 C Kit.



### D-4. Seegene STARlet

Option: Pre-analytic System (See Vial Cap Management System operation manual)

| Automated Pre-analytic System | Manufacturer | Cat. No.    |
|-------------------------------|--------------|-------------|
| Vial Cap Management System    | Hamilton     | 6600532-01* |

\* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

#### **Option:** Automated Linkage Structure (See AIOS operation manual)

| Automated Linkage Structure | Manufacturer | Cat. No. |
|-----------------------------|--------------|----------|
| AIOS                        | Seegene      | SG72100  |

**Note:** Replace the cap of the Positive Control (PC) with a pierceable cap. After finishing the operation, replace the cap of the Positive Control (PC) with the original cap.

**Note:** The pierceable cap is a single-use product and must be disposed of after one use.

Note: If used with AIOS, this product can be used for maximum 3 separate runs.

Note: See Seegene STARlet operation manual.

| Automated Extraction System | Manufacturer | Cat. No.  | Recommended Vol. |
|-----------------------------|--------------|-----------|------------------|
| Seegene STARlet             | Seegene      | 67930-03  | -                |
| STARMag 96 X 4              | Soogono      | 744300.4. | Specimen: 300 μL |
| Universal Cartridge Kit     | Seegene      | UC384     | Elution: 100 μL  |
| STARMag 96 X 4              | Soogono      | EX00012C  | Specimen: 300 µL |
| Viral DNA/RNA 200 C Kit*    | Seegene      | EX00013C  | Elution: 100 μL  |
|                             | Soogono      | EX00036P  | Specimen: 300 μL |
| STARWAY                     | Seegene      | EX00037P  | Elution: 60 μL   |

\* SurePath<sup>™</sup> and CellPreserv have not been validated with STARMag 96 X 4 Viral DNA/RNA 200 C Kit.

\*\* STARMag<sup>™</sup> S96H N Kit is designed and validated for the use with the configuration of Seegene STARlet with CO-RE 96 Probe Head.



#### D-5. SEEPREP12<sup>™</sup>

| Automated Extraction Systems | Manufacturer | Cat. No. | Recommended Vol. |
|------------------------------|--------------|----------|------------------|
| SEEPREP12™                   | DiaSorin     | SPN1200* | -                |
|                              | DiaSorin     | SDN1004* | Specimen: 240 µL |
|                              | DiaSonn      | 3FN1004  | Elution: 60 µL   |

\* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

\*\* Proteinase K (20 mg/mL) is not included in this kit.

- Add 10 µL of proteinase K (20 mg/mL; purchase separately) to each 1.5 mL sample tubes.
- Transfer 240 µL of specimen to the tube containing 10 µL of proteinase K, mix by flicking the tube gently.
- The cartridge and assembled pump-tip are placed on the instrument.
- Place 1.5 mL elution tube onto the instrument.
- Press "CONTINUE" on the first screen to let the instrument initialize.
- Press "START PROTOCOL" on the SEEPREP12<sup>TM</sup> main menu.
- In Select protocol menu, press "SPN Viral NA-HT v.2.0".
- In Select sample volume menu, press "250 µL" and in Select elution volume, press "60 µL".
- Follow the onscreen instructions for loading the instrument.
- After all steps are completed, close the lid and start the run.



## D-6. NucliSENS<sup>®</sup> easyMAG<sup>®</sup>

• Proceed the extraction process using 'generic protocol'.

| Automated Extraction System                 | Manufacturer | REF    | Recommended Vol.       |
|---------------------------------------------|--------------|--------|------------------------|
|                                             |              |        | Specimen: 200 μL       |
| NucliSENS <sup>®</sup> easyMAG <sup>®</sup> | bioMérieux   | 200111 | Magnetic Silica: 50 μL |
|                                             |              |        | Elution: 100 μL        |

#### D-7. SEEPREP32

• Proceed the extraction process using 'Pro-Protocol A'.

| Automated Extraction System      | Manufacturer | REF      | Recommended Vol. |
|----------------------------------|--------------|----------|------------------|
| SEEPREP32                        | Seegene      | SG71100  | -                |
| STARMag 06 ProProp (Plate Type)  | Soogono      | EX00000  | Specimen: 200 µL |
| STARINAY SO FIOFTED (FIALE Type) | Seegene      | EX00009P | Elution: 100 µL  |
| STARMag 06 BroBrop (Tubo Tupo)   | Soogono      | EX0000T  | Specimen: 200 µL |
| STARINAY SO FIOFTEP (Tube Type)  | Seegene      | EX000091 | Elution: 100 µL  |
| STARMag 96 ProPrep C             | Soogono      |          | Specimen: 200 µL |
| (Plate Type)*                    | Seegene      | EXUUUTIP | Elution: 100 µL  |
| STARMag 96 ProPrep C             | Seegene      |          | Specimen: 200 µL |
| (Tube Type)*                     | Seegene      | EX000171 | Elution: 100 µL  |

\* CellPreserv has not been validated with STARMag 96 ProPrep C (Plate Type) and STARMag 96 ProPrep C (Tube Type).



### E. Summary

| Extraction Method                             | Applicated sampling device                                              |
|-----------------------------------------------|-------------------------------------------------------------------------|
| Microlab NIMBUS IVD / Microlab STARlet IVD /  | eNAT <sup>®</sup> , ThinPrep <sup>®</sup> , SurePath <sup>™ 1,2</sup> , |
| Seegene NIMBUS / Seegene STARlet <sup>8</sup> | CellPreserv <sup>1</sup>                                                |
| SEEPREP12 <sup>™ 3</sup>                      | eNAT <sup>®</sup> , ThinPrep <sup>® 7</sup> , SurePath™                 |
| NucliSENS <sup>®</sup> easyMAG <sup>® 4</sup> | eNAT <sup>®</sup> , ThinPrep <sup>® 7</sup> , CellPreserv               |
| Oldomo <sup>®</sup> DNA Mini Kit              | eNAT®, ThinPrep®, SurePath <sup>™ 5</sup> ,                             |
|                                               | CellPreserv                                                             |
| Ribo_spin vRD                                 | ANAT® This Prop® Coll Process                                           |
| (Viral RNA/DNA Extraction Kit)                |                                                                         |
| SEEPREP32                                     | eNAT <sup>®</sup> , ThinPrep <sup>®</sup> , CellPreserv <sup>6</sup>    |

1. SurePath<sup>™</sup> and CellPreserv have not been validated with STARMag 96 X 4 Viral DNA/RNA 200 C Kit.

2. If DNA is extracted from SurePath<sup>™</sup> specimens with Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS or Seegene STARlet, there is a possibility that the sensitivity could be reduced compared to other extraction methods.

3. Only available for SEEPREP12<sup>™</sup> Viral NA Kit.

4. NucliSENS® easyMAG system

5. Process lysis step using 180 µL of ATL buffer instead of AL buffer in case of SurePath<sup>™</sup> media.

6. CellPreserv has not been validated with STARMag 96 ProPrep C (Plate Type) and STARMag 96 ProPrep C (Tube Type).

7. ThinPrep<sup>®</sup> media with self-collected vaginal specimens have not been validated with SEEPREP12<sup>™</sup> and NucliSENS<sup>®</sup>easyMAG<sup>®</sup>.

8. STARMag<sup>™</sup> S96H N Kit is designed and validated for the use with the configuration of Seegene STARlet with CO-RE 96 Probe Head.

\* Optional: Vial Cap Management System can be used with Microlab STARlet IVD and Seegene STARlet.

\*\* Optional: AIOS can be used with Seegene STARlet.



## 3. Preparation for Real-time PCR

Note: When using Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS or Seegene STARlet for this step, refer to each operation manual.

Note: The correct tubes and caps must be used (see MATERIALS REQUIRED BUT NOT PROVIDED).

**Note:** Aerosol resistant filter tips and tight gloves must be used when preparing specimens. Use an extreme care to ensure no cross-contamination.

Note: Completely thaw the reagents on ice.

Note: Spin down the reagent tubes to remove drops from the inner cap.

Note: The steps A~D are automatically processed on Microlab NIMBUS IVD, Microlab

## STARlet IVD, Seegene NIMBUS and Seegene STARlet. Refer to each operation manual.

#### A. Prepare PCR Mastermix.

| 5 μL  | 4X HPV HR TOM                 |
|-------|-------------------------------|
| 5 μL  | EM1                           |
| 5 μL  | RNase-free Water              |
| 15 μL | Total volume of PCR Mastermix |

**Note**: Calculate the necessary amount of each reagent needed based on the number of reactions (samples + controls).

## **B.** Mix by inverting 5 times or quick vortex, and spin down.

**C.** Aliquot 15  $\mu$ L of the PCR Mastermix into PCR tubes.

**D.** Add 5  $\mu$ L of each sample's nucleic acids into the tube containing PCR Mastermix.

| 15 μL | PCR Mastermix            |  |
|-------|--------------------------|--|
| 5 μL  | Sample's nucleic acid    |  |
| 20 uL | Total volume of reaction |  |

Note: Use a new sterile pipette tip for each sample.

Note: For Negative Control (NC), use 5 µL of RNase-free Water instead of sample's nucleic acid.

Note: For Positive Control (PC), use 5 µL of each HPV HR PC1, PC2 and PC3.

**Note:** Please be careful not to cross-contaminate the PCR Mastermix and samples with the Positive Control.

Note: Do not label the cap of the reaction tubes as fluorescence is detected through the cap.



### • Positive Control

There are three Positive Control tubes included in the kit; HPV HR PC1, PC2 and PC3.

Each PC includes clones for 5 targets.

Note: To run the Positive Control reaction, prepare three PCR tubes.

(See the results below.)

#### **Positive control**

| Name |    | FAM |    |    | HEX |    | Ca | Red | 510 | Qu | iasar 6 | 670 | Qu | asar 7 | 05 | Auto interpretation   |
|------|----|-----|----|----|-----|----|----|-----|-----|----|---------|-----|----|--------|----|-----------------------|
|      | 66 | 45  | 58 | 51 | 59  | 16 | 33 | 39  | 52  | ю  | 35      | 18  | 56 | 68     | 31 |                       |
| PC1  | +  | -   | -  | +  | -   | I  | +  | -   | -   | +  | 1       | I   | +  | I      | -  | Positive Control (+ ) |
| PC2  | -  | +   | -  | -  | +   | -  | -  | +   | -   | -  | +       | -   | -  | +      | -  | Positive Control (+ ) |
| PC3  | -  | -   | +  | -  | I   | +  | -  | -   | +   | -  | 1       | +   | I  | I      | +  | Positive Control (+ ) |



## REAL-TIME PCR INSTRUMENT SET UP AND RESULTS ANALYSIS

# 1. CFX96<sup>™</sup> Real-time PCR Detection System (CFX Manager<sup>™</sup> Software-IVD v1.6)

#### 1.1. Real-time PCR Instrument set up

**Note:** CFX96<sup>™</sup> Real-time PCR Detection System (Bio-Rad) experiment setup can be divided into three steps: Protocol Setup, Plate Setup and Start Run.

## A. Protocol Setup

#### 1) In the main menu, select File $\rightarrow$ New $\rightarrow$ Protocol to open Protocol Editor.



Fig. 1. Protocol Setup



# 2) In **Protocol Editor**, define the thermal profile as follows:

# i) cyclic-CMTA (Melt analysis of three times)

| Step | Temperature             | No. of cycles    |    |
|------|-------------------------|------------------|----|
| 1    | 50°C                    | 4 min            |    |
| 2    | 95°C                    | 15 min           |    |
| 3    | 95°C                    | 30 sec           |    |
| 4    | 60°C                    | 1 min            | 30 |
| 5    | 72°C                    | 30 sec           | 30 |
| 6    | GOTO 3, 29 more times   |                  |    |
| 7    | 55°C                    | 30 sec           |    |
| 8*   | Melting curve 55°C ~ 85 | °C (5 s / 0.5°C) |    |
| 9    | 95°C                    | 30 sec           |    |
| 10   | 60°C                    | 1 min            | 10 |
| 11   | 72°C                    | 30 sec           | 10 |
| 12   | GOTO 9, 9 more times    |                  |    |
| 13   | 55°C                    | 30 sec           |    |
| 14*  | Melting curve 55°C ~ 85 | °C (5 s / 0.5°C) |    |
| 15   | 95°C                    | 30 sec           |    |
| 16   | 60°C                    | 1 min            | 10 |
| 17   | 72°C                    | 30 sec           | 10 |
| 18   | GOTO 15, 9 more times   |                  |    |
| 19   | 55°C                    | 30 sec           |    |
| 20*  | Melting curve 55°C ~ 85 | °C (5 s / 0.5°C) |    |

\*Note: Plate Read at Steps 8, 14 and 20. Fluorescence is detected at Melting.



| Step | Temperature               | Duration        | No. of cycles |
|------|---------------------------|-----------------|---------------|
| 1    | 50°C                      | 4 min           |               |
| 2    | 95°C                      | 15 min          |               |
| 3    | 95°C                      | 30 sec          |               |
| 4    | 60°C                      | 1 min           | 50            |
| 5    | 72°C                      | 30 sec          | 50            |
| 6    | GOTO 3, 49 more times     |                 |               |
| 7    | 55°C                      | 30 sec          |               |
| 8*   | Melting curve 55°C ~ 85°C | C (5 s / 0.5°C) |               |

# ii) End point-CMTA (Melt analysis of one time)

\*Note: Plate Read at Step 8. Fluorescence is detected at Melting.





Fig. 2. Protocol Editor (cyclic-CMTA)



Fig. 3. Protocol Editor (End point-CMTA)

3) Click on **Sample Volume** to directly edit the 20  $\mu$ L.





4) Click **OK** and save the protocol to open the **Experiment Setup** window.

Fig. 4. Experiment Setup Protocol (cyclic-CMTA)



Fig. 5. Experiment Setup Protocol (End point-CMTA)



### B. Plate Setup

1) From Plate tab in Experiment Setup, click Create New to open Plate Editor window.

| Experim | ent Setup       |                |               |                |     |     |     |          |              |                 |                | ×            |
|---------|-----------------|----------------|---------------|----------------|-----|-----|-----|----------|--------------|-----------------|----------------|--------------|
| Option  | ns              |                |               |                |     |     |     |          |              |                 |                |              |
| PI      | rotocol 🛄 I     | Plate 🕠 Sta    | art Run       |                |     |     |     |          |              |                 |                |              |
|         | Create New      |                |               |                |     |     |     |          | Express      | Load            |                |              |
| S       | elect Existing. |                |               |                |     |     |     |          | QuickPla     | te_96 wells_All | Channels, pltd | •            |
| Selec   | ted Plate       |                | ×.            |                |     |     |     |          |              |                 |                |              |
| Quick   | Plate_95 wells. | _All Channels, | offed         |                |     |     |     |          |              |                 | Edit Si        | elected      |
| Fluoro  | phores:         | FAM, H         | EX, Texas Rec | l, Cy5, Quasar | 705 |     |     | Plate Ty | pe: BR Clear |                 | Scan Mode      | All Channels |
|         | 1               | 2              | 3             | 4              | 5   | 6   | 7   | 8        | 9            | 10              | 11             | 12           |
| A       | Unk             | Unk            | Unk           | Unk            | Unk | Unk | Unk | Unk      | Unk          | Unk             | Unk            | Unk          |
| в       | Unk             | Unk            | Unk           | Unk            | Unk | Unk | Unk | Unk      | Unk          | Unk             | Unk            | Unk          |
| с       | Unk             | Unk            | Unk           | Unk            | Unk | Unk | Unk | Unk      | Unk          | Unk             | Unk            | Unk          |
| D       | Unk             | Unk            | Unk           | Unk            | Unk | Unk | Unk | Unk      | Unk          | Unk             | Unk            | Unk          |
| Е       | Unk             | Unk            | Unk           | Unk            | Unk | Unk | Unk | Unk      | Unk          | Unk             | Unk            | Unk          |
| F       | Unk             | Unk            | Unk           | Unk            | Unk | Unk | Unk | Unk      | Unk          | Unk             | Unk            | Unk          |
| G       | Unk             | Unk            | Unk           | Unk            | Unk | Unk | Unk | Unk      | Unk          | Unk             | Unk            | Unk          |
| н       | Unk             | Unk            | Unk           | Unk            | Unk | Unk | Unk | Unk      | Unk          | Unk             | Unk            | Unk          |
| ,       |                 |                |               |                |     |     |     |          |              |                 | << Prev        | Next >>      |

Fig. 6. Plate Editor

Click Select Fluorophores to indicate the fluorophores (FAM, HEX, Cal Red 610, Quasar 670 and Quasar 705) that will be used and click OK.



Fig. 7. Select Fluorophores (FAM, HEX, Cal Red 610, Quasar 670 and Quasar 705)



3) Select the wells where the PCR tube will be placed and select its sample type from the **Sample Type** drop-down menu.

- Unknown: Clinical samples
- Negative Control
- Positive Control

4) Click on the appropriate checkboxes (FAM, HEX, Cal Red 610, Quasar 670 and Quasar 705) to specify the fluorophores to be detected in the selected wells.

5) Type in **Sample Name** and **PC (PC1, PC2** and **PC3)**, and then press enter key.

6) In Settings of the Plate Editor main menu, choose the Plate Size (96 wells) and Plate Type (BR White).

| Plate E | ditor - Test.pl    | td                 |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 |                             |
|---------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------|-----------------------------|
| File    | Settings           | Tools              |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 |                             |
|         | 4 Plate            | Size               | End c.             | con Mode all       | Channels           |                    |                    |                    |                    |                    |                    |                    |                 | Dista Londing Guida         |
|         | Plate              | Туре               | · ·                | BR White           | Channels           |                    | weir Grou          | ps   f             |                    |                    |                    |                    |                 | Plate Loading Guide         |
|         | Numi               | per Conventio      | n 🕨                | BR Clear           | 5                  | 6                  | 7                  | 8                  | 9                  | 10                 | 11                 | 12                 | Select Elu      | orophores                   |
|         | Units              |                    | · · ·              | Unk                | <u> </u>        |                             |
|         | HEX                | Sample Tupe     | (Unlanaum)                  |
| A       | Cal Red 610        | Sample Type     | Unknown 👻                   |
|         | Quasar 705         | (               | T (N)                       |
|         | Unk                | Unk                | Unic               | Unk                | Load            | larget Name                 |
|         | FAM                | V FAM           | <none> 👻</none>             |
| в       | Cal Red 610        | Cal Red 610        | Cal Red 610        | Cal Red 610        | HEX<br>Cal Red 610 | Cal Red 610        | HEX<br>Cal Red 610 | Cal Red 610        | Cal Red 610        | HEX<br>Cal Red 610 | Cal Red 610        | Cal Red 610        | V HEX           | <none> 👻</none>             |
|         | Quasar 670         | Cal Red 610     | <none></none>               |
|         | Quasar /us         | Quasar /05         | Quasar 705         | Quasar /us         | Quasar /us         | Quasar 705         | Quasar 705         | Quasar 705         | Quasar 705         | Quasar /us         | Quasar /us         | Quasar 705         | Ousesr 670      | (nana)                      |
|         | Unk                |                 | <ul> <li>Cliques</li> </ul> |
|         | HEX                | V Quasar 705    | <none> 👻</none>             |
| С       | Cal Red 610        | 1               |                             |
|         | Quasar 705         | Load            | Sample Name                 |
|         | Uok                | Unk                | Uok                | Uok                | Uok                | Uok                | Uok                | Uok                | Unk                | Uok                | Uok                | Uok                |                 | <none> 👻</none>             |
|         | FAM                | EAM                | FAM                |                 |                             |
| n       | HEX<br>Col Red 610 | HEX<br>Col Red 610 | HEX<br>Col Red 610 | HEX<br>Col Red 610 | HEX<br>Cal Red 610 | HEX<br>Col Red 610 | HEX<br>Col Red 610 | HEX<br>Col Red 610 | HEX<br>Cal Red 610 | HEX<br>Col Red 610 | HEX<br>Col Red 610 | HEX<br>Col Red 610 | Load            | Replicate #                 |
| -       | Quasar 670         | [PT]            | 1                           |
|         | Quasar 705         | Des Re          |                             |
|         | Unk                | Unk                | Unk                | Unk                | Unk                | Pos                | Unk                | Unk                | Unk                | Unk                | Unk                | Pos                | rieplic         | ate Series                  |
|         | HEX                | Serime Experime | nt Settings                 |
| E       | Cal Red 610        |                 |                             |
|         | Quasar 705         | 25 Clear F      | Replicate #                 |
|         | Unk                | Unk                | Unk                | Unk                | Unk                | PC1<br>Ros         | Unk                | Unk                | Unk                | Unk                | Unk                | PC1<br>Ros         | Clea            | ar Wells                    |
|         | EAM                | FAM                | FAM                | FAM                | FAM                | FAM                | EAM                | EAM                | FAM                | FAM                | FAM                | FAM                |                 |                             |
| F       | HEX<br>Cal Red 610 | HEX<br>Cal Red 610 | HEX<br>Cal Red 510 | HEX<br>Cal Red 610 | HEX<br>Cal Red 610 | HEX<br>Cal Red 610 | HEX<br>Cal Red 610 | HEX<br>Cal Red 510 | HEX<br>Cal Red 510 | HEX<br>Cal Red 610 | HEX<br>Cal Red 610 | HEX<br>Cal Red 610 |                 |                             |
|         | Quasar 670         |                 |                             |
|         | Quasar 705         | Quasar 705<br>PC2  | Quasar 705         | Quasar 705<br>PC2  |                 |                             |
|         | Unk                | Unk                | Unk                | Unk                | Unk                | Pos                | Unk                | Unk                | Unk                | Unk                | Unk                | Pos                |                 |                             |
|         | HEX                |                 |                             |
| G       | Cal Red 610        |                 |                             |
|         | Quasar 705         |                 |                             |
|         | Units              | Units              | Itala              | Unio               | Unio               | PC3                | Units              | Units              | Units              | Unio               | Unio               | PC3                |                 |                             |
|         | FAM                |                 |                             |
| н       | HEX<br>Cal Red 610 |                 |                             |
|         | Quasar 670         |                 |                             |
|         | Quasar 705         |                 |                             |
|         | lete Tupe i Pi     | 2 10/6/4-0         |                    |                    |                    |                    |                    |                    | -                  |                    |                    |                    | . OK            | Cancel                      |
| P       | iate iype : bi     | a write            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 | Cancer                      |

Fig. 8. Plate Setup

7) Click **OK** to save the new plate.



| Experim | ent Setup       |             |                |                |            |     |     |          |              |      |           | <b>×</b>     |
|---------|-----------------|-------------|----------------|----------------|------------|-----|-----|----------|--------------|------|-----------|--------------|
| Optio   | ns              |             |                |                |            |     |     |          |              |      |           |              |
| P       | rotocol 🛄       | Plate 🕠 Sta | art Run        |                |            |     |     |          |              |      |           |              |
|         | Create New      |             |                |                |            |     |     |          | Express      | Load |           |              |
| s       | elect Existing. |             |                |                |            |     |     |          |              |      |           | -            |
| Selec   | ted Plate       |             |                |                |            |     |     |          |              |      |           |              |
| Test, p | pltd            |             |                |                |            |     |     |          |              |      | Edit S    | elected      |
| Previe  | BW              |             |                |                |            |     |     |          |              |      |           |              |
| Fluore  | ophores:        | FAM, H      | EX, Cal Red 61 | 0, Quasar 670, | Quasar 705 |     |     | Plate Ty | pe: BR White |      | Scan Mode | All Channels |
|         | 1               | 2           | 3              | 4              | 5          | 6   | 7   | 8        | 9            | 10   | 11        | 12           |
| A       | Unk             | Unk         | Unk            | Unk            | Unk        | Unk | Unk | Unk      | Unk          | Unk  | Unk       | Unk          |
| в       | Unk             | Unk         | Unk            | Unk            | Unk        | Unk | Unk | Unk      | Unk          | Unk  | Unk       | Unk          |
| с       | Unk             | Unk         | Unk            | Unk            | Unk        | Unk | Unk | Unk      | Unk          | Unk  | Unk       | Unk          |
| D       | Unk             | Unk         | Unk            | Unk            | Unk        | Unk | Unk | Unk      | Unk          | Unk  | Unk       | Unk          |
| E       | Unk             | Unk         | Unk            | Unk            | Unk        | Pos | Unk | Unk      | Unk          | Unk  | Unk       | Pos          |
| F       | Unk             | Unk         | Unk            | Unk            | Unk        | Pos | Unk | Unk      | Unk          | Unk  | Unk       | Pos          |
| G       | Unk             | Unk         | Unk            | Unk            | Unk        | Pos | Unk | Unk      | Unk          | Unk  | Unk       | Pos          |
| н       | Unk             | Unk         | Unk            | Unk            | Unk        | Neg | Unk | Unk      | Unk          | Unk  | Unk       | Neg          |
|         |                 |             |                |                |            |     |     |          |              |      | << Prev   | Next >>      |

8) You will be returned to the Experiment Setup window.

- Fig. 9. Experiment Setup: Plate
- 9) Click **Next** to start run.

#### C. Start Run

1) From Start Run tab in Experiment Setup, click Close Lid to close the instrument lid.

| Experiment Setup                 |         |            |               |              |
|----------------------------------|---------|------------|---------------|--------------|
| Options                          |         |            |               |              |
| Protocol III Plate III Start Run |         |            |               |              |
| Run Information                  |         |            |               | 1            |
| Protocol : AnyplexII.prcl        |         |            |               |              |
| Plate : Test.pltd                |         |            |               |              |
| Notes :                          |         | *          |               |              |
|                                  |         | _          |               |              |
|                                  |         |            |               |              |
| Scan Mode : All Channels         |         |            |               |              |
| Start Run on Selected Block(s)   |         |            |               |              |
| Block Name 🛆                     | Туре    | Run Status | Sample Volume | Protocol ID  |
| BR100160 "9                      | 96FX"   | ldle       | 20            |              |
|                                  |         |            |               |              |
|                                  |         |            |               |              |
|                                  |         |            |               |              |
|                                  |         |            |               |              |
|                                  |         |            |               |              |
|                                  |         |            |               |              |
| Select All Blocks                |         |            |               |              |
| G Flash Block Indicator Open Lic | d Close | e Lid      |               |              |
|                                  |         | <b>`</b>   |               |              |
|                                  |         |            |               |              |
|                                  |         | •          |               | Start Run    |
|                                  |         |            |               | Prev Next >> |
|                                  |         |            |               | NEAL >>>     |

# Fig. 10. Close Lid



- 2) Select the instrument checkbox and click Start Run.
- 3) Store the run file either in My documents or in the designated folder. Input the file name, click **SAVE**, and the run will start.

#### 1.2. Data Analysis

A. Create folders for data export

#### A-1. cyclic-CMTA

#### • When using 'Export All Data Sheets to Excel' function (See page 32)

1) To save data from each melt curve detection step from the results file, create three folders for each step: "1" for data from step 8, "2" for data from step 14, and "3" for data from step 20.

#### • When using 'Seegene Export' function (See page 36)

1) To save data from all of the melt curve detection steps from the results file, create one folder.

2) Folder name may be as desired by the user (For 'Seegene Export' function, MeltStep8, MeltStep14 and MeltStep20 are automatically created to save each melt point data under the folder created by the user).

## A-2. End point-CMTA

- 1) To save data for melt point from result file, create one folder.
- 2) Folder name may be as desired by the user.



#### B. Pre-settings for Data Analysis in CFX Manager<sup>™</sup>

#### B-1. Using 'Export All Data Sheets to Excel' function

1) After the test, click the Melt curve tab to confirm the Melt Peak results.



Fig. 11. Melt Peak results

2) Select Step number "8" and select "Export All Data Sheets to Excel" from Tools menu.

Note: Select "Export All Data Sheets to Excel" directly in case of End point-CMTA.





Fig. 12. Export All Data Sheets to Excel



3) Save the result to the specified folder "1".

Note: In case of End point-CMTA, results can be saved in any folder.



Fig. 13. Export all data from spreadsheets to designated folder



4) Make sure that the results have been saved to the folder "1".

Fig. 14. Exported Result files

Note: Skip 5) ~ 7) steps and process next analysis stage in case of End point-CMTA.



5) Return to step 2) and select **Step number** "**14**". Repeat steps 3) & 4) and save data in designated folder "**2**".

6) Return back to step 2) and select Step number "20".

7) Repeat steps 3) & 4) and save data in **"3" folder**. Data of each step number is saved as shown below.

| Step number | Designated folder |
|-------------|-------------------|
| 8           | 1                 |
| 14          | 2                 |
| 20          | 3                 |



#### B-2. Using 'Seegene Export' function



1) After the test, click the **Melt Curve** tab to confirm the Melt Peak results.

Fig. 15. Melt Peak results



2) Select Seegene Export from Tools menu.

Fig. 16. Seegene Export



3) Choose a location to save data and click OK.



Fig. 17. Seegene Export to designated folder

### C. Settings for Data Analysis in Seegene Viewer

1) Open Seegene Viewer program, and click **Option** to select **CFX96** in the **Instrument**.



Fig. 18. Seegene viewer



2) Click **Open** to find the saved file in folder "1"or folder "MeltStep8", open the results file, and select the test kit from the **PRODUCT** menu.

Note: Please find the saved data in arbitrary folder in case of End point-CMTA.

| Seegene Viewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ile Edit Option Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ⓐ ⓐ ⓐ ⓐ ⓐ ⓐ ि ■ PRODUCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lest - Quantitation Ct Hesults,xisx ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 🕒 WELL PLATE 🛛 🗠 WELL GRAPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 2 3 4 5 6 7 8 9 10 11 12 V FAM V HEX V Cal Red 610 V Quasar 670 V Quasar 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A POSITIVE CONTRACTOR |
| Well Info Positive Find O Vertical O Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample No Patient Id Well Name Type FAM HEX Cal Red 610 Quasar 6 Quasar 705 Auto Interpretation Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A01 SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BUI SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COI SAMPLE COI COI CONTRACTOR CONTRACT                                                                                                                                                                                                                                             |
| C DUI SAMPLE C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Fig. 19. Settings for Data Analysis in Seegene Viewer

Note: Please verify the type of tube when selecting test kit (8 strip / 96 plate / 96 film).



3) Check the result for each well.

Fig. 20. Test result on Seegene Viewer



# 2. CFX96<sup>™</sup> Dx System (CFX Manager<sup>™</sup> Dx Software v3.1)

#### 2.1. Real-time PCR Instrument set up

**Note:** CFX96<sup>™</sup> Dx System (Bio-Rad) experiment setup can be divided into three steps: Protocol Setup, Plate Setup, and Start Run.

## A. Protocol Setup

1) In the main menu, select File  $\rightarrow$  New  $\rightarrow$  Protocol to open Protocol Editor.



Fig. 1. Protocol Setup



# 2) In **Protocol Editor**, define the thermal profile as follows:

# i) cyclic-CMTA (Melt analysis of three times)

| Step | Temperature               | Duration        | No. of cycles |
|------|---------------------------|-----------------|---------------|
| 1    | 50°C                      | 4 min           |               |
| 2    | 95°C                      | 15 min          |               |
| 3    | 95°C                      | 30 sec          |               |
| 4    | 60°C                      | 1 min           | 30            |
| 5    | 72°C                      | 30 sec          | 30            |
| 6    | GOTO 3, 29 more times     |                 |               |
| 7    | 55°C                      | 30 sec          |               |
| 8*   | Melting curve 55°C ~ 85°C | C (5 s / 0.5°C) |               |
| 9    | 95°C                      | 30 sec          |               |
| 10   | 60°C                      | 1 min           | 10            |
| 11   | 72°C                      | 30 sec          | 10            |
| 12   | GOTO 9, 9 more times      |                 |               |
| 13   | 55°C                      | 30 sec          |               |
| 14*  | Melting curve 55°C ~ 85°C | C (5 s / 0.5°C) |               |
| 15   | 95°C                      | 30 sec          |               |
| 16   | 60°C                      | 1 min           | 10            |
| 17   | 72°C                      | 30 sec          | 10            |
| 18   | GOTO 15, 9 more times     |                 |               |
| 19   | 55°C                      | 30 sec          |               |
| 20*  | Melting curve 55°C ~ 85°C | C (5 s / 0.5°C) |               |

\*Note: Plate Read at Steps 8, 14 and 20. Fluorescence is detected at Melting.



| Step | Temperature               | Duration        | No. of cycles |
|------|---------------------------|-----------------|---------------|
| 1    | 50°C                      | 4 min           |               |
| 2    | 95°C                      | 15 min          |               |
| 3    | 95°C                      | 30 sec          |               |
| 4    | 60°C                      | 1 min           | 50            |
| 5    | 72°C                      | 30 sec          | 50            |
| 6    | GOTO 3, 49 more times     |                 |               |
| 7    | 55°C                      | 30 sec          |               |
| 8*   | Melting curve 55°C ~ 85°C | C (5 s / 0.5°C) |               |

# ii) End point-CMTA (Melt analysis of one time)

\*Note: Plate Read at Step 8. Fluorescence is detected at Melting.





Fig. 2. Protocol Editor (cyclic-CMTA)



Fig. 3. Protocol Editor (End point-CMTA)

3) Click the box next to Sample Volume to directly input 20  $\mu$ L.





#### 4) Click OK and save the protocol to open the Run Setup window.

Fig. 4. Run Setup Protocol (cyclic-CMTA)







### B. Plate Setup

| 1) | From <b>Plate</b> tab in <b>Run</b> | Setun  | click Create | Now to one | n Plato | Editor window  |
|----|-------------------------------------|--------|--------------|------------|---------|----------------|
| 1) | FIOIII FIALE LAD III RUII           | Setup, | CIICK Cleale | New to ope | Flate   | Eullor window. |

| Run Setu | p             |           |              |             |             |     |     |            |             |        |            | ×            |
|----------|---------------|-----------|--------------|-------------|-------------|-----|-----|------------|-------------|--------|------------|--------------|
| M Pr     | otocol 🂷      | ) Plate 🕠 | Start Run    |             |             |     |     |            |             |        |            |              |
|          | Create New,   |           |              |             |             |     |     |            | Express Loa | d      |            |              |
| Se       | elect Existin | g         |              |             |             |     |     |            |             |        |            | ~            |
| Select   | ed Plate      |           | •            |             |             |     |     |            |             |        |            |              |
| 5 chan   | nel, pltd     |           |              |             |             |     |     |            |             |        | Edit Se    | lected       |
| Previe   | w             |           |              |             |             |     |     |            |             |        |            |              |
| Fluoro   | phores:       | FAM, H    | IEX, Cal Red | 610, Quasar | 670, Quasar | 705 |     | Plate Type | e: BR White |        | Scan Mode: | All Channels |
|          | 1             | 2         | 3            | 4           | 5           | 6   | 7   | 8          | 9           | 10     | 11         | 12           |
| А        | Unk           | Unk       | Unk          | Unk         | Unk         | Unk | Unk | Unk        | Unk         | Unk    | Unk        | Unk          |
| в        | Unk           | Unk       | Unk          | Unk         | Unk         | Unk | Unk | Unk        | Unk         | Unk    | Unk        | Unk          |
| C        | Unk           | Unk       | Unk          | Unk         | Unk         | Unk | Unk | Unk        | Unk         | Unk    | Unk        | Unk          |
| D        | Unk           | Unk       | Unk          | Unk         | Unk         | Unk | Unk | Unk        | Unk         | Unk    | Unk        | Unk          |
| E        | Unk           | Unk       | Unk          | Unk         | Unk         | Unk | Unk | Unk        | Unk         | Unk    | Unk        | Unk          |
| F        | Unk           | Unk       | Unk          | Unk         | Unk         | Unk | Unk | Unk        | Unk         | Unk    | Unk        | Unk          |
| G        | Unk           | Unk       | Unk          | Unk         | Unk         | Unk | Unk | Unk        | Unk         | Unk    | Unk        | Unk          |
| н        | Unk           | Unk       | Unk          | Unk         | Unk         | Unk | Unk | Unk        | Unk         | Unk    | Unk        | Unk          |
| ,        |               |           |              |             |             |     |     |            |             | << Pre | v          | Next >>      |

Fig. 6. Plate Editor

Click Select Fluorophores to indicate the fluorophores (FAM, HEX, Cal Red 610, Quasar 670 and Quasar 705) that will be used and click OK.



Fig. 7. Select Fluorophores (FAM, HEX, Cal Red 610, Quasar 670 and Quasar 705)



3) Select the wells where the PCR tube will be placed and select its sample type from the **Sample Type** drop-down menu.

- Unknown: Clinical samples
- Negative Control
- Positive Control

4) Click on the appropriate checkboxes (FAM, HEX, Cal Red 610, Quasar 670 and Quasar 705) to specify the fluorophores to be detected in the selected wells.

5) Type in **Sample Name** and **PC (PC1, PC2** and **PC3)**, and then press enter key.

6) In Settings of the Plate Editor main menu, choose the Plate Size (96 wells) and Plate Type (BR White).

| 1 10100 1 | ditor - Test.p                                                                                                                                                                              | ltd                                                                                                                                                                                                   |                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                             |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| File      | Settings                                                                                                                                                                                    | Editing Tool                                                                                                                                                                                          | s                                                                                                                                                                                                                   |                                                                                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                             |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ?                                                                |
|           | 1 Plate<br>Plate                                                                                                                                                                            | Size<br>Type                                                                                                                                                                                          | ► All C                                                                                                                                                                                                             | Channels<br>BR White                                                                                                                                                                                  |                                                                                                                                                                                              | Well Group                                                                                                                                                                                   | os 🔯 Trac                                                                                                                                                                                                               | e Styles 🗐                                                                                                                                                                                                     | Spreadshee                                                                                                                                                                                            | t View/Impor                                                                                                                                                                                                        | ter                                                                                                                                                                                                 |                                                                                                                                                                                                             |   | <u>e</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Plate Loading Guide                                              |
|           | Num                                                                                                                                                                                         | ber Conventio                                                                                                                                                                                         | on 🕨                                                                                                                                                                                                                | BR Clear                                                                                                                                                                                              |                                                                                                                                                                                              | 6                                                                                                                                                                                            | 7                                                                                                                                                                                                                       | 8                                                                                                                                                                                                              | 9                                                                                                                                                                                                     | 10                                                                                                                                                                                                                  | 11                                                                                                                                                                                                  | 12                                                                                                                                                                                                          |   | Select Flu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orophores                                                        |
| A         | HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                              | HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                        | HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                      | FAM<br>HEX<br>Cal Red 610<br>Quasar 705                                                                                                                                                               | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                 | Unk<br>FAM<br>HEX<br>CLRed 610<br>Quasar 705                                                                                                                                                 | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                            | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                   | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                          | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                        | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                        | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                |   | Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unknown -                                                        |
| в         | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                          | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                        | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                          | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                 | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                 | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                            | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                   | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                          | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                        | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                        | Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                |   | FAM HEX Cal Red 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre><none>  </none></pre> <none> </none>                        |
|           | Unk                                                                                                                                                                                         | Unk                                                                                                                                                                                                   | Unk                                                                                                                                                                                                                 | Unk                                                                                                                                                                                                   | Unk                                                                                                                                                                                          | Unk                                                                                                                                                                                          | Unk                                                                                                                                                                                                                     | Unk                                                                                                                                                                                                            | Unk                                                                                                                                                                                                   | Unk                                                                                                                                                                                                                 | Unk                                                                                                                                                                                                 | Unk                                                                                                                                                                                                         |   | 📝 Quasar 670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <none> 👻</none>                                                  |
| с         | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                       | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                 | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                               | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                 | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                        | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                        | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                   | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                          | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                 | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                               | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                               | FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                       | = | Quasar 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <none> 👻</none>                                                  |
|           | Unk                                                                                                                                                                                         | Unk                                                                                                                                                                                                   | Unk                                                                                                                                                                                                                 | Unk                                                                                                                                                                                                   | Unk                                                                                                                                                                                          | Unk                                                                                                                                                                                          | Unk                                                                                                                                                                                                                     | Unk                                                                                                                                                                                                            | Unk                                                                                                                                                                                                   | Unk                                                                                                                                                                                                                 | Unk                                                                                                                                                                                                 | Unk                                                                                                                                                                                                         |   | Contraction of the second s | e> 👻                                                             |
| D         | HEX<br>Col Red 610                                                                                                                                                                          | HEX                                                                                                                                                                                                   | HEX                                                                                                                                                                                                                 | HEX                                                                                                                                                                                                   | HEX                                                                                                                                                                                          | HEX                                                                                                                                                                                          | HEX                                                                                                                                                                                                                     | HEX                                                                                                                                                                                                            | HEX                                                                                                                                                                                                   | HEX                                                                                                                                                                                                                 | HEX                                                                                                                                                                                                 | HEX                                                                                                                                                                                                         |   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the ater                                                         |
|           | Quasar 670<br>Quasar 705                                                                                                                                                                    | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                             | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                                 | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                             | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                             | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                     |   | Load Heplic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
|           | Quasar 670<br>Quasar 705                                                                                                                                                                    | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                             | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                                 | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                             | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                             | Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                                                                     |   | Load Heplic<br>Part 1<br>Replica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ite Series                                                       |
| -         | Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                          | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                          | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Pos<br>FAM<br>HEX                                                                                                                                 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                                            | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                                   | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                          | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX                                                                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Pos<br>FAM<br>HEX                                                                                                                                                |   | Load Heplic<br>Part 1<br>Replica<br>Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ite Series                                                       |
| E         | Quasar 670<br>Quasar 705<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                           | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                    | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                             | Cal Red 610<br>Quasar 670<br>Quasar 705<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                             | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                                    | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                    | Cal Red 610<br>Quasar 670<br>Quasar 705<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                                                                                            |   | Load Heplic<br>Peplica<br>Experiment<br>Clear R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | te Series<br>ht Settings<br>eplicate #                           |
| E         | Quasar 705<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                                    | Cal Red 610<br>Quasar 670<br>Quasar 705<br>EAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>PC1<br>Pos                                                                               | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                                          | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                                 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk                                                                                      | Cal Red 610<br>Quasar 670<br>Quasar 705<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>PC1<br>Pos                                                                                              | - | Load Heplic<br>1<br>Replica<br>Experiment<br>Clear R<br>Clear R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | te Series<br>ht Settings,<br>eplicate #<br>r Wells               |
| E         | Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cai Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cai Red 610<br>Quasar 670<br>Quasar 705                                  | Cal Red 610<br>Quasar 670<br>Quasar 705<br>HEK<br>FAM<br>HEX<br>Quasar 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                                | Cal Red 610<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 705                                             | Cal Red 510<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 510<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670                                                     | Cal Red 610<br>Quasar 670<br>Quasar 705<br>HEX<br>FAM<br>HEX<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670                                             | Cal Red 610<br>Quasar 705<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>PC1<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Quasar 705<br>Quasar 707<br>Quasar 670<br>Quasar 670 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670                                                                        | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670                          | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670                                | Cal Red 610<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 705                                             | Cal Red 610<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670                                                                 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>PC1<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Quasar 670<br>Quasar 670<br>Quasar 670                |   | Load Heplic<br>Paper I<br>Replica<br>Clear R<br>Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | te Series                                                        |
| F         | Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cai Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705                                                          | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unik                                                 | Cal Red 610<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unk                                                                                | Cal Red 510<br>Quasar 670<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unic                                   | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unk                                           | Cal Red 510<br>Quasar 670<br>Quasar 705<br>FAM<br>HEX<br>Cal Red 510<br>Quasar 6705<br>PCC<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>PC2<br>Pos                     | Cal Red 610<br>Quasar 705<br>Unit<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unit<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Quasar 705<br>Unit                                                                   | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670                          | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705                               | Cal Red 610<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unk                                                                                | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unit<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unit<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unit                                               | Cal Red 510<br>Quasar 670<br>Quasar 705<br>FAM<br>HEX<br>Cal Red 510<br>Quasar 670<br>PC1<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>PC2<br>POS                                     |   | Load Heplic<br>Replica<br>Experimen<br>Clear R<br>Clea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ette series                                                      |
| F         | Quasar 670<br>Quasar 670<br>Quasar 705<br>FAM<br>HEX<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Gal Red 610<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Quasar 705<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 510<br>Quasar 670<br>Quasar 705<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>PC1<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unik<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705<br>Unic<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 705<br>Unk<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 670<br>Quasar 670<br>Quasar 670<br>Quasar 705 | Cal Red 510<br>Quasar 670<br>Quasar 705<br>Pos<br>FAM<br>HEX<br>Cal Red 510<br>Quasar 705<br>PC1<br>Pos<br>FAM<br>HEX<br>Cal Red 510<br>Quasar 705<br>PC2<br>Pos<br>FAM<br>HEX<br>Cal Red 610<br>Quasar 705 |   | Load Heplic<br>I Replica<br>Experiment<br>Clear R<br>Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tte Series<br>tt Series<br>at Settings,<br>eplicate ∉<br>r Wells |

Fig. 8. Plate Setup

7) Click **OK** to save the new plate.



|                  | Create New,   |        |              |             |             |     |     | 12        | Express Loa | d   |            |            |
|------------------|---------------|--------|--------------|-------------|-------------|-----|-----|-----------|-------------|-----|------------|------------|
| S                | elect Existin | 9      |              |             |             |     |     |           |             |     |            |            |
| Select           | ted Plate     |        |              |             |             |     |     |           |             |     |            |            |
| char             | nnel, pitd    |        |              |             |             |     |     |           |             |     | Edit Sel   | .ected     |
| -revie<br>Fluoro | phores:       | FAM, H | IEX, Cal Red | 610, Quasar | 670, Quasar | 705 |     | Plate Typ | e: BR White |     | Scan Mode: | All Channe |
| 1                | 1             | 2      | 3            | 4           | 5           | 6   | 7   | 8         | 9           | 10  | 11         | 12         |
| A                | Unk           | Unk    | Unk          | Unk         | Unk         | Unk | Unk | Unk       | Unk         | Unk | Unk        | Unk        |
| в                | Unk           | Unk    | Unk          | Unk         | Unk         | Unk | Unk | Unk       | Unk         | Unk | Unk        | Unk        |
| С                | Unk           | Unk    | Unk          | Unk         | Unk         | Unk | Unk | Unk       | Unk         | Unk | Unk        | Unk        |
| D                | Unk           | Unk    | Unk          | Unk         | Unk         | Unk | Unk | Unk       | Unk         | Unk | Unk        | Unk        |
| Ł                | Unk           | Unk    | Unk          | Unk         | Unk         | Unk | Unk | Unk       | Unk         | Unk | Unk        | Unk        |
| F                | Unk           | Unk    | Unk          | Unk         | Unk         | Unk | Unk | Unk       | Unk         | Unk | Unk        | Unk        |
| G                | Unk           | Unk    | Unk          | Unk         | Unk         | Unk | Unk | Unk       | Unk         | Unk | Unk        | Unk        |
| н                | Unk           | Unk    | Unk          | Unk         | Unk         | Unk | Unk | Unk       | Unk         | Unk | Unk        | Unk        |

#### 8) You will be returned to the **Run Setup** window.

Fig. 9. Run Setup: Plate

9) Click **Next** to start run.

#### C. Start Run

1) From Start Run tab in Run Setup, click Close Lid to close the instrument lid.

| Run Setup                                                 |         |            |               |             |
|-----------------------------------------------------------|---------|------------|---------------|-------------|
| Mart Protocol 💷 Plate 🕩 Start Run                         |         |            |               |             |
| Run Information                                           |         |            |               |             |
| Protocol: AnyplexII.prcl                                  |         |            |               |             |
| Notes:                                                    |         |            |               |             |
|                                                           |         |            |               | <u>^</u>    |
|                                                           |         |            |               | -           |
| Scan Mode: All Channels<br>Start Bun on Selected Block(s) |         |            |               |             |
|                                                           | _       |            |               |             |
| Block Name A                                              | Туре    | Run Status | Sample Volume | ID/Bar Code |
| BR100160                                                  | "96FX"  | Idle       | 20            |             |
|                                                           |         |            |               |             |
|                                                           |         |            |               |             |
|                                                           |         |            |               |             |
|                                                           |         |            |               |             |
|                                                           |         |            |               |             |
| Select All Blocks                                         |         |            |               |             |
| Elash Block Indicator                                     | nen Lid | Close Lid  |               |             |
|                                                           |         |            |               |             |
|                                                           |         |            |               |             |
|                                                           |         |            |               | Start Bun   |
|                                                           |         |            |               | ▶ Start Run |
|                                                           |         |            |               | Start Run   |

# Fig. 10. Close Lid



### 2) Click Start Run.

 Store the run file either in My Documents or in a designated folder. Input the file name, click SAVE and the run will start.

#### 2.2. Data Analysis

A. Create folders for data export

#### A-1. cyclic-CMTA

#### • When using 'Export All Data Sheets to Excel' function (See page 48)

1) To save data from each melt curve detection step from the results file, create three folders for each step: "1" for data from step 8, "2" for data from step 14, and "3" for data from step 20.

#### • When using 'Seegene Export' function (See page 52)

1) To save data from all of the melt curve detection steps from the results file, create one folder.

2) Folder name may be as desired by the user (For 'Seegene Export' function, MeltStep8, MeltStep14, and MeltStep20 are automatically created to save each melt point data under the folder created by the user).

## A-2. End point-CMTA

- 1) To save data for melt point from result file, create one folder.
- 2) Folder name may be as desired by the user.



## B. Pre-settings for Data Analysis in CFX Manager<sup>™</sup>

#### B-1. Using 'Export All Data Sheets to Excel' function

1) After the test, click the **Melt Curve** tab to confirm the Melt Peak results.



Fig. 11. Melt Peak results



2) Select **Step Number** "**8**" and select **"Export All Data Sheets (Excel 2007 or Excel 2003)**" from Export menu.

Note: Select "Export All Data Sheets (Excel 2007 or Excel 2003)" directly in case of End point-CMTA.





Fig. 12. Export All Data Sheets to Excel



3) Save the result to the specified folder "1".

Note: In case of End point-CMTA, results can be saved in any folder.



Fig. 13. Export all data from spreadsheets to designated folder



4) Make sure that the results have been saved to the folder "1".

Fig. 14. Exported Result files

Note: Skip 5) ~ 7) steps and process next analysis stage in case of End point-CMTA.



5) Return to step 2) and select **Step number** "**14**". Repeat steps 3) & 4) and save data in designated folder "**2**".

6) Return back to step 2) and select Step number "20".

7) Repeat steps 3) & 4) and save data in **"3" folder**. Data of each step number is saved as shown below.

| Step number | Designated folder |
|-------------|-------------------|
| 8           | 1                 |
| 14          | 2                 |
| 20          | 3                 |



#### B-2. Using 'Seegene Export' function



1) After the test, click the **Melt Curve** tab to confirm the Melt Peak results.

Fig. 15. Melt Peak results



2) Select Seegene Export from Export menu.

Fig. 16. Seegene Export



3) Choose a location to save data and click OK.



Fig. 17. Seegene Export to designated folder

#### C. Settings for Data Analysis in Seegene Viewer



1) Open Seegene Viewer program, and click **Option** to select **CFX96 Dx** in the **Instrument**.

Fig. 18. Seegene viewer



2) Click **Open** to find the saved file in folder "1"or folder "MeltStep8", open the results file, and select the test kit from the **PRODUCT** menu.

Note: Please find the saved data in arbitrary folder in case of End point-CMTA.

| Seegene Viewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | -             |                           |                      |                     |          | - • ×                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|---------------------------|----------------------|---------------------|----------|-------------------------|
| File Edit Option Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |               |                           |                      |                     |          |                         |
| <ul> <li>(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |               |                           |                      |                     |          |                         |
| Test - Quantitation Ct Results.xl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sx × 🔳      |               |                           |                      |                     |          |                         |
| SWELL PLATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | WELL GRAPH    |                           |                      |                     |          | 0                       |
| 1 2 3 4 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 9 10 11 1 | 2 📝 FAM 📝 HEX | 🛛 📝 Cal Red 610 🛛 📝 Quasa | r 670 🛛 🗹 Quasar 705 |                     |          | 🗐 1 st 📄 2 nd 📝 3 rd    |
| 1       2       3       4       5       7       6       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |             |               |                           |                      |                     |          |                         |
| Well Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |               |                           |                      | Positive            | Find 🕅 🞑 | 🖲 Vertical 💿 Horizontal |
| Sample No Patient Id V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vell Name T | ype FAM       | HEX Cal Red 610           | Quasar 6 Quasar 705  | Auto Interpretation | Comment  |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A01 SAI     | MPLE          |                           |                      |                     |          | *                       |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 301 SAI     | MPLE          |                           |                      |                     |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO1 SAM     | MPLE          |                           |                      |                     |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 001 SAI     | MPLE          |                           |                      |                     |          |                         |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E01 SAM     | MPLE          |                           |                      |                     |          |                         |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F01 SAM     | MPLE          |                           |                      |                     |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G01 SAN     | MPLE          |                           |                      |                     |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101 SAI     | MPLE          |                           |                      |                     |          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | auz    SAF  | VIPLE         |                           |                      | 1                   |          | *                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |               |                           |                      |                     |          | ver 3,12,00             |

Fig. 19. Settings for Data Analysis in Seegene Viewer

Note: Please verify the type of tube when selecting test kit (8 strip / 96 plate / 96 film).

| Seegene Viewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| File Edit Option Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| <ul> <li>(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Test - Quantitation Ct Results,xIsx X 🗉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 🕒 WELL PLATE 🛛 🔜 WELL GRAPH 🗤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 1 2 3 4 5 6 7 8 9 10 11 12 V FAM V HEX V Cal Red 610 V Quasar 670 V Quasar 705 1 st 2 nd V 3 rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| ● Negative ● Positive 1 Invalid Combine 55 60 65 70 75 80 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| APPLY RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Well Info Positive Find Q Vertical Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Campel No. Patient M. Name Time Auto Intermediation Departu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Commente veni name type Auto interpretation Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| A01 SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| B01 SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| CUI SAMPLE High-risk HPV 55(+) +++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| OUT         SAMPLE         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -< |  |  |  |  |
| F01 SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |

3) Check the result for each well.

Fig. 20. Test result on Seegene Viewer



# RESULTS

# 1. Analyte Information

| Fluorophore | Anyplex <sup>™</sup> II HPV HR Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FAM         | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HEX         | LP(null)p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cal Red610  | LP(() HP() HP() HP() HP() HP() HP() HP()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Quasar670   | LP(C) IC 35 18<br>Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Quasar705   | LP(() HP(() HP)() HP(() HP(() HP)() HP(() HP(() |



# 2. Interpretation of Results

## A. cyclic-CMTA

| HPV Result <sup>*</sup> | IC Result <sup>*</sup> | Interpretation                                             |
|-------------------------|------------------------|------------------------------------------------------------|
|                         |                        | Target Nucleic acid, detected                              |
|                         | +++ 0 ++               | - Target HPV type identification                           |
|                         |                        | Target Nucleic acid, detected**                            |
|                         |                        | - Target HPV type identification                           |
|                         | + or -                 | - Additional HPV genotypes which may be present were       |
|                         |                        | not detected                                               |
| -                       | +++ or ++              | Target Nucleic acid, not detected                          |
|                         |                        | Invalid                                                    |
|                         |                        | - Weak or negative IC signal suggests inadequate           |
|                         | + or                   | specimen collection, processing or the presence of         |
| -                       | + 0i -                 | inhibitors.                                                |
|                         |                        | - Repeat the test from the step of nucleic acid extraction |
|                         |                        | using another aliquot of the original specimen.            |

\* Internal Control or any other signals are not observed: see TROUBLESHOOTINGS (Page 60).

\*\* Internal Control signal could be reduced or absent due to high titer of pathogens.

|        | cyclic-CMTA                                   |                                |   |  |  |  |  |  |  |
|--------|-----------------------------------------------|--------------------------------|---|--|--|--|--|--|--|
| Result | (cyclic-Catcher Melting Temperature Analysis) |                                |   |  |  |  |  |  |  |
|        | First CMTA point                              | t CMTA point Second CMTA point |   |  |  |  |  |  |  |
| +++    | +                                             | +                              | + |  |  |  |  |  |  |
| ++     | -                                             | +                              | + |  |  |  |  |  |  |
| +      | -                                             | -                              | + |  |  |  |  |  |  |
| -      | -                                             | -                              | - |  |  |  |  |  |  |



# B. End point-CMTA

| HPV Result <sup>*</sup> | IC Result <sup>*</sup> | Interpretation                                             |  |  |  |
|-------------------------|------------------------|------------------------------------------------------------|--|--|--|
|                         |                        | Target Nucleic acid, detected                              |  |  |  |
| <b>T</b>                | Ŧ                      | - Target HPV type identification                           |  |  |  |
|                         |                        | Target Nucleic acid, detected**                            |  |  |  |
|                         |                        | - Target HPV type identification                           |  |  |  |
| +                       | -                      | - Additional HPV genotypes which may be present were       |  |  |  |
|                         |                        | not detected                                               |  |  |  |
| -                       | +                      | Target Nucleic acid, not detected                          |  |  |  |
|                         |                        | Invalid                                                    |  |  |  |
|                         |                        | - Negative IC signal suggests inadequate specimen          |  |  |  |
| -                       | -                      | collection, processing or the presence of inhibitors.      |  |  |  |
|                         |                        | - Repeat the test from the step of nucleic acid extraction |  |  |  |
|                         |                        | using another aliquot of the original specimen.            |  |  |  |

\* Internal Control or any other signals are not observed: see TROUBLESHOOTINGS (Page 60).

\*\* Internal Control signal could be reduced or absent due to high titer of pathogens.



# 3. Application to Clinical Samples

# A. cyclic-CMTA

#### Melt Peak-1<sup>st</sup> (First CMTA point)



#### Melt Peak-2<sup>nd</sup> (Second CMTA point)







| Auto Interpretation | Remark         | Quasar 670 |    | FAM |    |    | HEX |     | Ca | I Red ( | 610 | Quas | ar 670 | Qı | ıasar 7 | 705 |
|---------------------|----------------|------------|----|-----|----|----|-----|-----|----|---------|-----|------|--------|----|---------|-----|
|                     |                | IC         | 66 | 45  | 58 | 51 | 59  | 16  | 33 | 39      | 52  | 35   | 18     | 56 | 68      | 31  |
| Hign-risk HPV       | 10(+++), 68(+) | +++        | -  | -   | -  | -  | -   | +++ | -  | -       | -   | -    | -      | -  | +       | -   |



# B. End point-CMTA



| Auto Interpretation | Remark   | Quasar 670 |    | FAM |    |    | HEX |    | Ca | I Red ( | 610 | Quas | ar 670 | Qı | iasar 7 | 705 |
|---------------------|----------|------------|----|-----|----|----|-----|----|----|---------|-----|------|--------|----|---------|-----|
|                     | <i>i</i> | IC         | 66 | 45  | 58 | 51 | 59  | 16 | 33 | 39      | 52  | 35   | 18     | 56 | 68      | 31  |
| High-risk HPV       | 16, 68   | +          | -  | -   | -  | -  | -   | +  | -  | -       | -   | -    | -      | -  | +       | -   |



# TROUBLESHOOTINGS

|                                                                | Anyplex™ II H                                                                                                                                                                                          | PV HR Detection                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| OBSERVATION                                                    | PROBABLE CAUSES                                                                                                                                                                                        | SOLUTION                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                | The fluorophores for data<br>analysis do not comply with<br>the protocol                                                                                                                               | Select the correct fluorophores for data analysis.                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| No signal                                                      | Incorrect PCR cycle or<br>machine temperature<br>Leaving reagents at room<br>temperature for a long time<br>or incorrect storage condition<br>Incorrect programming<br>Nucleic acid extraction failure | Please check the PCR conditions and repeat the<br>PCR under the correct setting if necessary.<br>Please check the storage conditions (See page 11)<br>and the expiry date (see the kit label) of the reagents<br>and use a new kit if necessary.<br>Repeat the detection procedure with a correct<br>setting.<br>Make sure that you use a recommended extraction<br>method. |  |  |  |  |  |
|                                                                | Error in specimen collection                                                                                                                                                                           | If both target and IC signal were not observed that<br>means specimen collected inappropriately. Recollect<br>the specimen.                                                                                                                                                                                                                                                 |  |  |  |  |  |
| No Internal                                                    | High load of pathogen's<br>nucleic acid                                                                                                                                                                | Without detection of IC signal, target signal i<br>considered as "detected" when target is observed<br>For IC signal detection, re-test by diluting samples.<br>1 Dilute the template nucleic acid in RNase-fre                                                                                                                                                             |  |  |  |  |  |
| Control signal                                                 | Presence of PCR Inhibitor                                                                                                                                                                              | <ul><li>water to 10X-100X and repeat PCR.</li><li>② Dilute the specimen in PBS to 10X-100X and repeat from extraction.</li></ul>                                                                                                                                                                                                                                            |  |  |  |  |  |
| Putative false<br>positive or<br>target signals<br>observed in | Presence of cross<br>contamination                                                                                                                                                                     | Decontaminate all surfaces and instruments with<br>sodium hypochlorite and ethanol. Use only filter tips<br>during the extraction procedure. Change tips among<br>tubes. Repeat the nucleic acid extraction with the<br>new set of reagents.                                                                                                                                |  |  |  |  |  |
| Negative Control                                               | between PC1, 2 and 3                                                                                                                                                                                   | Restant from extraction step of real-time PCR step.                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |



| Anyplex <sup>™</sup> II HPV HR Detection |                                                                          |                                                                                                                                                                                 |  |  |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| OBSERVATION                              | PROBABLE CAUSES                                                          | SOLUTION                                                                                                                                                                        |  |  |  |  |  |
|                                          | Error in specimen collection                                             | Recollect the specimen.                                                                                                                                                         |  |  |  |  |  |
|                                          | Incorrect storage of the specimen                                        | Recollect the specimen and repeat the whole process. Make sure the product is stored in recommended conditions.                                                                 |  |  |  |  |  |
|                                          | Error in nucleic acid<br>extraction                                      | Re-extract the nucleic acid.                                                                                                                                                    |  |  |  |  |  |
|                                          | Error in adding nucleic acid to corresponding PCR tubes                  | Check the sample numbers for nucleic acid<br>containing tubes and make sure to add nucleic acid<br>into correct PCR tubes during detection process.                             |  |  |  |  |  |
| Putative false<br>negative or No         | Presence of inhibitor                                                    | Dilute the specimen in PBS (10~100x) and repeat from extraction step with the diluted specimen.                                                                                 |  |  |  |  |  |
| observed in<br>Positive Control          | The fluorophores for data<br>analysis do not comply with<br>the protocol | Select the correct fluorophores for data analysis.                                                                                                                              |  |  |  |  |  |
|                                          | Incorrect programming                                                    | Repeat the PCR with corrected setting.                                                                                                                                          |  |  |  |  |  |
|                                          | Incorrect PCR mixture                                                    | Check whether all components are added or not<br>(Sensitivity is compromised when precomposed<br>premix is used). All reagents must be homogenized<br>and spun down before use. |  |  |  |  |  |
|                                          | Leaving reagents at room                                                 | Please check the storage condition and the expiry                                                                                                                               |  |  |  |  |  |
|                                          | temperature for a long time                                              | date (see the kit label) of the reagents and use a                                                                                                                              |  |  |  |  |  |
|                                          | or incorrect storage condition                                           | new kit if necessary.                                                                                                                                                           |  |  |  |  |  |



# PERFORMANCE

## 1. Specificity

The high specificity of the Anyplex<sup>™</sup> II HPV HR Detection is ensured by the primers specifically designed for the targets in interest and the reaction condition. Anyplex<sup>™</sup> II HPV HR Detection has been tested for cross-reactivity in 80 different pathogens: result illustrated PCR amplifications in targets only.

| Organism                      | Strain No.     | Test Result <sup>†</sup> |
|-------------------------------|----------------|--------------------------|
| Acinetobacter baumannii       | ATCC 15150     | Not detected             |
| Bacteroides fragilis          | ATCC 25285D    | Not detected             |
| Chlamydia trachomatis         | ATCC VR-577    | Not detected             |
| Corynebacterium genitalium    | ATCC 33030     | Not detected             |
| Enterobacter cloacae          | KCTC 13047     | Not detected             |
| Enterococcus faecalis         | ATCC 700802D-5 | Not detected             |
| Escherichia coli              | ATCC 15489     | Not detected             |
| Fusobacterium nucleatum       | ATCC 25586D-5  | Not detected             |
| Gardnerella vaginalis         | ATCC 14019     | Not detected             |
| Haemophilus ducreyi           | ATCC 33940     | Not detected             |
| Klebsiella pneumoniae         | ATCC 13883     | Not detected             |
| Lactobacillus acidophilus     | ATCC 4357D-5   | Not detected             |
| Lactobacillus crispatus       | ATCC 33820     | Not detected             |
| Lactobacillus gasseri         | ATCC 33323     | Not detected             |
| Lactobacillus iners           | ATCC 55195     | Not detected             |
| Lactobacillus jensenii        | ATCC 25258     | Not detected             |
| Mobiluncus curtisii           | ATCC 35241     | Not detected             |
| Mobiluncus mulieris           | ATCC 35243     | Not detected             |
| Neisseria gonorrhoeae         | ATCC 700825D   | Not detected             |
| Neisseria meningitidis        | ATCC 700532D   | Not detected             |
| Neisseria sicca               | ATCC 29256     | Not detected             |
| Peptostreptococcus anaerobius | ATCC 49031D-5  | Not detected             |
| Propionibacterium acnes       | ATCC 6919      | Not detected             |
| Proteus mirabilis             | ATCC 12453     | Not detected             |



| Organism                           | Strain No.     | Test Result <sup>†</sup> |
|------------------------------------|----------------|--------------------------|
| Proteus vulgaris                   | ATCC 6059      | Not detected             |
| Pseudomonas aeruginosa             | ATCC 15522     | Not detected             |
| Pseudomonas fluorescens            | KCTC 49642     | Not detected             |
| Serratia marcescens                | ATCC 27137D-5  | Not detected             |
| Staphylococcus aureus subsp.aureus | ATCC 29213     | Not detected             |
| Streptococcus agalactiae           | ATCC BAA-611D  | Not detected             |
| Streptococcus mitis                | ATCC 49456D-5  | Not detected             |
| Streptococcus pyogenes             | ATCC 700294D-5 | Not detected             |
| Trichomonas vaginalis              | ATCC 30001D    | Not detected             |
| Ureaplasma urealyticum             | ATCC 33695     | Not detected             |
| Candida albicans                   | ATCC 14053     | Not detected             |
| Cytomegalovirus                    | ATCC VR-807    | Not detected             |
| Epstein-Barr virus                 | ATCC VR-602    | Not detected             |
| Herpes simplex virus 1             | ATCC VR-260    | Not detected             |
| Herpes simplex virus 2             | ATCC VR-734    | Not detected             |
| Human Adenovirus 40                | ATCC VR-931    | Not detected             |
| HPV1                               | ATCC 45021     | Not detected             |
| HPV2                               | ATCC 45022     | Not detected             |
| HPV6                               | ATCC 45150D    | Not detected             |
| HPV11                              | ATCC 45151D    | Not detected             |
| HPV26                              | Korean isolate | Not detected             |
| HPV34                              | Korean isolate | Not detected             |
| HPV40                              | Korean isolate | Not detected             |
| HPV42                              | Korean isolate | Not detected             |
| HPV43                              | ATCC 40339     | Not detected             |
| HPV44                              | Korean isolate | Not detected             |
| HPV53                              | Korean isolate | Not detected             |
| HPV54                              | Korean isolate | Not detected             |
| HPV61                              | Korean isolate | Not detected             |
| HPV62                              | Korean isolate | Not detected             |
| HPV69                              | Korean isolate | Not detected             |



| Organism  | Strain No.     | Test Result <sup>†</sup> |
|-----------|----------------|--------------------------|
| HPV70     | Korean isolate | Not detected             |
| HPV71     | Korean isolate | Not detected             |
| HPV72     | Korean isolate | Not detected             |
| HPV73     | Korean isolate | Not detected             |
| HPV81     | Korean isolate | Not detected             |
| HPV82     | Korean isolate | Not detected             |
| HPV83     | Korean isolate | Not detected             |
| HPV84     | Korean isolate | Not detected             |
| HPV102    | Korean isolate | Not detected             |
| HPV16     | ATCC 45113D    | Detected (HPV16)         |
| HPV18     | ATCC 45152D    | Detected (HPV18)         |
| HPV31     | ATCC 65446     | Detected (HPV31)         |
| HPV33     | Korean isolate | Detected (HPV33)         |
| HPV35     | ATCC 40330     | Detected (HPV35)         |
| HPV39     | Korean isolate | Detected (HPV39)         |
| HPV45     | Korean isolate | Detected (HPV45)         |
| HPV51     | Korean isolate | Detected (HPV51)         |
| HPV52     | Korean isolate | Detected (HPV52)         |
| HPV56     | ATCC 40549     | Detected (HPV56)         |
| HPV58     | Korean isolate | Detected (HPV58)         |
| HPV59     | Korean isolate | Detected (HPV59)         |
| HPV66     | Korean isolate | Detected (HPV66)         |
| HPV68     | Korean isolate | Detected (HPV68)         |
| SiHa Cell | KCLB 30035     | Detected (HPV16)         |
| HeLa Cell | KCLB 10002     | Detected (HPV18)         |

<sup>†</sup>To prove the availability of the results, the experiment was repeated three times.

※ ATCC: American Type Culture Collection

KCTC: Korean Collection for Type Culture

KCLB: Korean Cell Line Bank



### 2. Sensitivity

In order to determine the sensitivity of Anyplex<sup>™</sup> II HPV HR Detection, a standard serial dilution has been set up from 10<sup>5</sup> to 10<sup>0</sup> copies/reaction plasmid DNA and from 5 x 10<sup>3</sup> to 10<sup>1</sup> cells/mL SiHa cell (HPV16) and HeLa cell (HPV18) and analyzed with Anyplex<sup>™</sup> II HPV HR Detection. Detection limit for Anyplex<sup>™</sup> II HPV HR Detection was 50 copies/reaction for plasmid DNA and 500 cells/mL for SiHa cell (HPV16) and HeLa cell (HPV18).

#### 3. Reproducibility

A criterion for reproducibility test is to obtain the same results over time. The percent (%) agreement with expected result should be over 95%. Reproducibility test using cloned pDNAs was tested with 3 different product lots, 3 different experimenters, 3 different laboratory sites, and 7 different time points. The overall agreement for the Anyplex<sup>™</sup> II HPV HR Detection was 99.4%.

#### 4. Interfering substances

Interference testing was carried out using human whole blood and cervical mucus as external materials not related with target species. Anyplex<sup>TM</sup> II HPV HR Detection showed clear results that there is no influence on results observed under conditions mentioned above.



### REFERENCES

- 1. Burd EM. [Human papillomavirus and cervical cancer.] Clin Microbiol Rev. (2003) 16(1): 1-17
- Castle PE. [The potential utility of HPV genotyping in screening and clinical management.] J Natl Compr Canc Netw. (2008) 6(1): 83-95
- 3. Chris JM, Peter JS, Philip EC. [Clinical utility of HPV genotyping.] Gynecol Oncol. (2006) 103: 12-17
- Chun JY, Kim KJ, Hwang IT, Kim YJ, Lee DH, Lee IK, Kim JK. [Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene.] Nucleic Acids Res. (2007) 35(6): e40
- 5. Chun JY. [High Multiplex Molecular Diagnostics.] Seegene Bulletin (2012) 1: 1-4
- Giorgi Rossi P, Bisanzi S, Paganini I, Di Iasi A, Angeloni C, Scalisi A, Macis R, Pini MT, Chini F, Carozzi FM. [HPV Prevalence Italian Working Group Prevalence of HPV high and low risk types in cervical samples from the Italian general population: a population based study.] BMC Infect Dis. (2010) 20(10): 214
- 7. Hwang IT. [Cyclic-CMTA: An Innovative Concept in Multiplex Quantification.] Seegene Bulletin (2012) 1: 11-15
- 8. Krane JF, Granter SR, Trask CE, Hogan CL, Lee KR. [Papanicolaou smear sensitivity for the detection of adenocarcinoma of the cervix: a study of 49 cases.] Cancer. (2001) 93(1): 8-15
- 9. Lee DH. [TOCE: Innovative Technology for High Multiplex Real-time PCR.] Seegene Bulletin (2012) 1: 5-10
- 10. Li J, Mei J, Wang X, Hu L, Lin Y, Yang P. [Human papillomavirus type-specific prevalence in women with cervical intraepithelial neoplasm in Western China.] J Clin Microbiol. (2012) 50(3): 1079-1081
- Novaes LC, Novaes MR, Simes-Barbosa A. [Diagnosis of human papillomatosis by polymerase chain reaction in cases of divergence between results of hybrid capture and papanicolaou cytology.] Braz J infect Dis. (2006) 10(3):169-172
- Son S, Noh HT, An S. [Human papillomavirus status in cervical scrapes and biopsy specimens using the HPV genotyping DNA microarray.] Int J Gynaecol Obstet. (2006) 93(3): 258-259
- Sun ZR, Ji YH, Zhou WQ, Zhang SL, Jiang WG, Ruan Q. [Characteristics of HPV prevalence among women in Liaoning province, China.] Int J Gynaecol Obstet. (2010) 109(2): 105-109
- Wallace J, Woda BA, Pihan G. [Facile, Comprehensive High-Throughput Genotyping of Human Genital Papillomaviruses Using Spectrally Addressable Liquid Bead Microarrays.] J Mol Diagn. (2005) 7(1): 72-80
- 15. Ursu RG, Onofriescu M, Nemescu D, Iancu LS. [HPV prevalence and type distribution in women with or without cervical lesions in the Northeast region of Romania.] Virol J. (2011) 22(8): 558



# **KEY TO SYMBOLS**

| Symbol    | Explanation                                         |
|-----------|-----------------------------------------------------|
| IVD       | In vitro diagnostic medical device                  |
| LOT       | Batch code                                          |
| REF       | Catalogue number                                    |
|           | Use-by date                                         |
|           | Upper limit of temperature                          |
| $\wedge$  | Caution                                             |
| PRIMER    | Oligonucleotide Mix for amplification and detection |
| WATER     | RNase-free Water                                    |
| CONTROL + | Positive Control (PC)                               |
| PREMIX    | PCR Master Mix or Detection Mix                     |
|           | Manufacturer                                        |
|           | Date of Manufacture                                 |
| Ĩ         | Consult instructions for use                        |
| EC REP    | Authorized representative in the European community |
| Σ         | Contains sufficient for <n> tests</n>               |
| UDI       | Unique Device Identifier                            |
| rxns      | Reaction barcode for automated extraction system    |



# **ORDERING INFORMATION**

| Cat. No.                           | Product                                     | Size        |  |  |
|------------------------------------|---------------------------------------------|-------------|--|--|
| Anyplex <sup>™</sup> II HPV Series |                                             |             |  |  |
| HP7E00X                            | Anyplex <sup>™</sup> II HPV HR Detection    | 100 rxns    |  |  |
| HP10380Z                           | Anyplex <sup>™</sup> II HPV HR Detection    | 25 rxns     |  |  |
| HP7S00X                            | Anyplex <sup>™</sup> II HPV28 Detection     | 100 rxns    |  |  |
| HP10379Z                           | Anyplex <sup>™</sup> II HPV28 Detection     | 25 rxns     |  |  |
| Seeplex <sup>®</sup> HPV Series    |                                             |             |  |  |
| HP6401Y                            | Seeplex <sup>®</sup> HPV4A ACE Screening    | 50 rxns     |  |  |
| Accessory product                  | ts                                          |             |  |  |
| SG1701                             | Ribo_spin vRD(Viral RNA/DNA Extraction Kit) | 50 preps    |  |  |
|                                    |                                             |             |  |  |
| Automated extraction system        |                                             |             |  |  |
| 65415-02                           | Microlab NIMBUS IVD                         | EA          |  |  |
| 173000-075                         | Microlab STARlet IVD                        | EA          |  |  |
| 65415-03                           | Seegene NIMBUS                              | EA          |  |  |
| 67930-03                           | Seegene STARlet                             | EA          |  |  |
| 744300.4.UC384                     | STARMag 96 X 4 Universal Cartridge Kit      | 384T / 1box |  |  |
| EX00013C                           | STARMag 96 X 4 Viral DNA/RNA 200 C Kit      | 384T / 1box |  |  |
| EX00003P                           | STARMag 96 UniPlate                         | 96 T / 1box |  |  |
| EX00004T                           | STARMag 96 UniTube                          | 96 T / 1box |  |  |
| EX00036P                           | STARMag <sup>™</sup> S96H N kit             | 480T / 1box |  |  |
| EX00037P                           | STARMag <sup>™</sup> S96H N kit             | 960T / 1box |  |  |
| SG71100                            | SEEPREP32                                   | EA          |  |  |
| EX00009P                           | STARMag 96 ProPrep (Plate Type)             | 96T / 1box  |  |  |
| EX00009T                           | STARMag 96 ProPrep (Tube Type)              | 96T / 1box  |  |  |
| EX00017P                           | STARMag 96 ProPrep C (Plate Type)           | 96T / 1box  |  |  |
| EX00017T                           | STARMag 96 ProPrep C (Tube Type)            | 96T / 1box  |  |  |
| 6600532-01                         | Vial Cap Management System                  | EA          |  |  |
| SG72100                            | AIOS                                        | EA          |  |  |