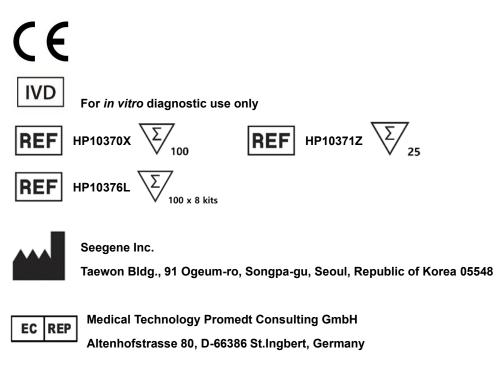
Allplex™

HPV HR Detection


(Cat. No. HP10370X/HP10376L, HP10371Z)

Allplex[™] PCR System for detection of human papillomavirus - 14 high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68) from cervical specimens and self-collected vaginal specimens.

For use with

1. CFX96™ Real-time PCR Detection System (CFX Manager™ Software-IVD v1.6)

2. CFX96[™] Dx System (CFX Manager[™] Dx Software v3.1)

Not available in the U.S.

TABLE OF CONTENTS

NOTICES	3
INTENDED USE	5
PRINCIPLES AND PROCEDURE OVERVIEW	6
BACKGROUND INFORMATION	7
REAGENTS	8
STORAGE AND HANDLING	10
MATERIALS REQUIRED BUT NOT PROVIDED	10
PROTOCOL	11
REAL-TIME PCR INSTRUMENT SET UP AND RESULTS ANALYSIS	20
RESULTS	40
TROUBLESHOOTINGS	43
PERFORMANCE	45
REFERENCES	53
KEY TO SYMBOLS	54
ORDERING INFORMATION	55

NOTICES

- For *in vitro* diagnostic use only.
- Allplex[™] HPV HR Detection should be performed by qualified, trained personnel.
- If this product is used with Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS, Seegene STARlet and Seegene STARlet 96MPH, it provides a maximum of 5 separate runs.
- This test has been validated for the following specimen types: cervical specimens and self-collected vaginal specimens. This test has not been validated for any other types of specimens.
- Store DNA samples at -20 °C until use and keep on ice during use.
- Sensitivity of the assay may decrease if samples are repeatedly frozen/thawed or stored for a longer period of time.
- Workflow in the laboratory should proceed in a unidirectional manner.
- Reliability of the results depends on adequate specimen collection, transport, storage and processing procedure.
- Wear disposable gloves and change them before entering different areas. Change gloves immediately if contaminated or treat them with DNA decontaminating reagent.
- Supplies and equipment must be dedicated to working areas and should not be moved from one area to another.
- Do not pipette by mouth.
- Do not eat, drink or smoke in laboratory work areas. Wear disposable powder-free gloves, laboratory coats, and eye protection when handling specimens and reagents. Wash hands thoroughly after handling specimens and test reagents.
- Avoid contamination of reagents when removing aliquots from reagent tubes. The use of sterile disposable pipette tips is recommended.
- Do not pool reagents from different lots.
- Do not use the product after its expiration date.
- Do not reuse all disposable items.
- Use screw-capped tubes and prevent any potential splashing or cross-contamination of specimens during preparations.
- To prevent contamination of reagents, the use of filter-tips is recommended. Also, be careful
 not to contaminate reagents with extracted nucleic acids, PCR products, and positive
 controls.
- Use separated working areas for each experiment.
- To avoid contamination of working areas with amplified products, open PCR reaction tubes or strips only at designated working areas after amplification.
- Store positive materials separated from the kit's reagents.

- Laboratory safety procedures (refer to Biosafety in Microbiological and Biomedical Laboratories & CLSI Documents) must be taken when handling specimens. Thoroughly clean and disinfect all work surfaces with 0.5% sodium hypochlorite (in de-ionized or distilled water). Product components (product residuals, packaging) can be considered as laboratory waste. Dispose unused reagents and waste in accordance with applicable federal, state, and local regulations.
- Expiration date is 13 months at ≤ -20°C from the date of manufacture. Please refer to the final label for expiration date.
- Seegene NIMBUS and Seegene STARlet are the same equipment as the Microlab NIMBUS IVD and Microlab STARlet IVD, just the manufacturer is different. Since there are no hardware changes on the instrument, the test results are the same.
- The brand name of "CFX96[™] Real-time PCR Detection System-IVD" is changed to "CFX96
 [™] Dx system". Since there are no hardware changes to the systems, it is expected to obtain the same results from both systems.
- "CFX Manager [™] Dx Software v3.1" is an upgrade version of "CFX Manager [™] Software-IVD v1.6". The upgraded software includes enhancements to the "Run" menu. These enhancements do not impact the results of data analysis; therefore, results from two softwares are the same.
- This kit is intended to aid in the differential diagnosis of target pathogen infections; Human papillomaviruses.
- Self-collection should be completed in a health care setting with instruction of healthcare provider.
- AIOS combines Seegene STARlet sold by Seegene with real-time PCR equipment (CFX96 Dx, Manufacturer: Bio-Rad) and plate sealer (Manufacturer: SAMICK THK) to form an automated linkage structure of nucleic acid extraction to PCR.

INTENDED USE

Allplex[™] HPV HR Detection is a qualitative *in vitro* molecular diagnostic assay designed to detect human papillomaviruses in cervical specimens or self-collected vaginal specimens. Allplex[™] HPV HR Detection detects HPV16, HPV18, and other high-risk HPV types (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68).

Allplex[™] HPV HR Detection is indicated:

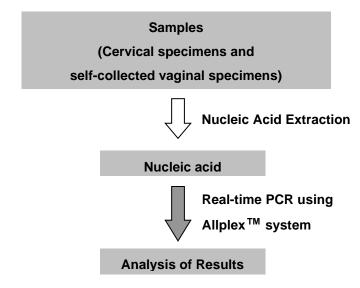
a) To be used with cervical cytology to adjunctively screen to assess the presence or absence of HPV16, HPV18 and other 12 individual high-risk HPV types (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68).

b) To be used as a primary screening test to identify women at increased risk for the development of cervical cancer or the presence of high-grade disease.

c) To be used as a primary screening test to assess the presence or absence of HPV16, HPV18 and other 12 individual high-risk HPV types (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68).

The results from Allplex[™] HPV HR Detection, together with the physician's assessment of cytology history, other risk factors, and professional guidelines, may be used to guide patient management.

PRINCIPLES AND PROCEDURE OVERVIEW


1. Principles

Allplex[™] HPV HR Detection is a multiplex real-time PCR assay that enables simultaneous amplification and detection of target nucleic acids of 14 high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68) as well as Internal Control (IC).

To perform the multiplex target amplification and detection in a single reaction, this assay kit employs Seegene's innovative proprietary DPO[™], TOCE[™], MuDT[™] and 3 Ct technologies. 3 Ct technology can provide the Ct value of three targets in one channel without affecting sensitivity and specificity. The presence of specific gene sequences in the reaction is reported as a Ct value through Seegene Viewer analysis software.

In PCR, amplification efficiency can be reduced by inhibitors that may be present in the clinical specimens. An Internal Control (IC) is incorporated into the product as an endogenous whole process control in order to monitor nucleic acid isolation, and to check for possible PCR inhibition. The IC is co-amplified with the target nucleic acids within the clinical specimens. Allplex[™] HPV HR Detection uses human house-keeping gene as an endogenous IC which can ensure extraction of DNA, verification of PCR reaction and clarification of cell adequacy from each specimen.

To prevent amplification product from acting as potential contaminants, Uracil-DNA glycosylase (UDG)-dUTP system is employed in Allplex[™] HPV HR Detection. The UDG-dUTP system is commonly used when performing PCR to eliminate amplicon carry-over using UDG to excise uracil residues from DNA by cleaving the N-glycosylic bond.

2. Procedure Overview

BACKGROUND INFORMATION

Human Papilloma Virus (HPV) infection is linked with cervical cancer. HPV can be divided into "high-risk (HR)" and "low-risk (LR)" groups on the basis of their association with cervical lesions. Therefore, it is very important to know which type of HPV is infected in patients to prevent cancer development and transmission of disease. Currently, commercially available major products to diagnose HPV are based on probe-hybridization method to detect and/or genotype HPV. However, main defects of the probe-hybridization based methods are high false positive rate due to cross-reactivity between probes and various kinds of viral DNA or PCR amplicons used for hybridization. Here we are introducing an innovative HPV detection/genotyping assay system which amplifies only specific targets without any cross reactivity and is automated in detection using real-time PCR method. The product only specifically detects true HPV and accurately genotypes them. It also contains endogenous Internal Control (IC) to check any inhibition that might occur during PCR reaction.

Cervical cancer, which progresses from the precancerous stage to invasive cancer, has 7-20 years of precancerous stage; Consequently early diagnosis is possible when HPV infection is suspected. High-risk HPV group may lead to the development of cervical cancer; especially, HPV16 and 18 are associated with 70% of cervical cancer case. On the other hands, low-risk HPV group including HPV6 and 11 may cause genital warts. Allplex[™] HPV HR Detection can identify 14 high-risk HPV types including HPV16 and 18 at the same time.

REAGENTS

The reagents contained in one kit are sufficient for 100 reactions.

Order information (**REF** HP10370X/HP10376L*).

* HP10376L is a package containing 8 kits of HP10370X (100 reactions).

Allplex™ HPV HR Detection				
Symbols	Contents	Volume	Description	
PRIMER	HPV HR MOM	500 μL	Oligo Mix: - Amplification and detection reagents	
ENZYME	EM4	500 μL	- DNA polymerase - Uracil-DNA glycosylase (UDG) - Buffer containing dNTPs	
BUFFER	EM4 Buffer	500 μL	Buffer for Real-time PCR - Buffer containing BSA and Glycerol	
	Allplex HPV HR PC1	50 μL	Positive Control (PC): - Mixture of pathogen clones	
CONTROL +	Allplex HPV HR PC2	50 μL	Positive Control (PC): - Mixture of pathogen clones	
CONTROL +	Allplex HPV HR PC3	50 μL	Positive Control (PC): - Mixture of pathogen clones	
WATER	RNase-free Water	1,000 μL	Ultrapure quality, PCR-grade	
	User manual			

Accessory product – analysis software

Seegene Viewer*

* The analysis software is provided by Seegene Inc. or regional manager. Please use Seegene Viewer beyond V3.

The reagents contained in one kit are sufficient for 25 reactions.

Order information (**REF** HP10371Z).

Allplex [™] HPV HR Detection				
Symbols	Contents	Volume	Description	
PRIMER	HPV HR MOM	125 μL	Oligo Mix: - Amplification and detection reagents	
ENZYME	EM4	125 μL	 DNA polymerase Uracil-DNA glycosylase (UDG) Buffer containing dNTPs 	
BUFFER	EM4 Buffer	125 μL	Buffer for Real-time PCR - Buffer containing BSA and Glycerol	
CONTROL +	Allplex HPV HR PC1	50 μL	Positive Control (PC): - Mixture of pathogen clones	
CONTROL +	Allplex HPV HR PC2	50 μL	Positive Control (PC): - Mixture of pathogen clones	
CONTROL +	Allplex HPV HR PC3	50 μL	Positive Control (PC): - Mixture of pathogen clones	
WATER	RNase-free Water	1,000 μL	Ultrapure quality, PCR-grade	
Ĩ	User manual			

Accessory product – analysis software

Seegene Viewer*

* The analysis software is provided by Seegene Inc. or regional manager. Please use Seegene Viewer beyond V3.

STORAGE AND HANDLING

All components of AllplexTM HPV HR Detection should be stored at \leq -20°C. All components are stable under recommended storage conditions until the expiration date stated on the label. The performance of kit components is not affected for up to 5 times of freezing and thawing. If the reagents are to be used only intermittently, they should be frozen in aliquots.

MATERIALS REQUIRED BUT NOT PROVIDED

- Disposable powder free gloves (latex or nitrile)
- Pipettes (adjustable) and sterile pipette tips
- 1.5 mL microcentrifuge tube
- Nucleic acid extraction kit (see Nucleic Acid Extraction)
- Ice maker
- Desktop centrifuge
- Vortex mixer
- CFX96[™] Real-time PCR Detection system (Bio-Rad)
- CFX96TM Dx System (Bio-Rad)
- Optical Flat 8-Cap Strips (Cat. No. TCS0803, Bio-Rad)
- Low-Profile 0.2 mL 8-Tube Strips without Caps (white color, Cat. No. TLS0851, Bio-Rad)
- Hard-Shell[®] 96-Well PCR Plates, low profile, thin wall, skirted, white/white (Cat. No. HSP9655, Bio-Rad)
- Hard-Shell[®] 96-Well PCR Plates, low profile, thin wall, skirted, white/white, barcoded (Cat. No. HSP9955, Bio-Rad)
- Vial Cap Management System (Cat. No. 6600532-01, Hamilton)
- AIOS (Cat. No. SG72100, Seegene)
- Pierceable cap (Cat. No. 922119, SPL) (for AIOS use only)
- Permanent Clear Heat Seal (Cat. No. 1814035, Bio-Rad)*
- PX1 PCR plate sealer (auto-sealer, Cat. No. 181-4000, Bio-Rad)*
- Clean bench
 - * Make sure to use the heat seal and the plate sealer listed above together.

PROTOCOL

1. Specimen Collection, Storage, and Transport

Note: All samples have to be treated as potentially infectious materials. Only those sample materials are permitted, which are collected, stored and transported attending strictly the following rules and instructions:

<u>Cervical specimen</u> <u>Self-collected vaginal specimen</u>

Note: To ensure a high sample quality, the specimens should be transported as fast as possible. The specimens have to be transported at the indicated temperature conditions.

A. Specimen Collection

Cervical specimen

For the collection of cervical specimen, please use following materials:

- Cervical specimen can be collected and transported in the following mediums:
 - eNAT[™] (COPAN, Italia), ThinPrep[®] (HOLOGIC, USA), SurePath[™] (Becton-Dickinson,

USA) or CellPreserv (Kolplast, Brazil) media

Cervical specimen collection kit	Manufacturer	Cat. No.
eNAT PM 2ML L-SHAPE APPLICATOR	COPAN	606CS01L

- Leave the swab in the transport medium. Close and label the sample container. Stick closely to the instructions given for storage and transport.
- Please follow a recommended protocol to collect columnar and squamous epithelium cells after removal of the cervical mucus.

Self-collected vaginal specimen

- For the collection of self-collected vaginal specimen, please use following material:
 - Rovers[®] Evalyn[®] Brush (Rovers Medical Devices B.V., Netherlands)

Self-sampling device	Manufacturer	Cat. No.
Rovers [®] Evalyn [®] Brush	Rovers Medical Devices B.V.	380500131

- Self-collected vaginal specimen can be collected and stored in ThinPrep[®] PreservCyt[®] Solution.
- Follow each manufacturer's instructions of sampling device and transport media for collection and storage of vaginal cell specimens.

Specimen	Media	Storage & Transport duration*		
Specimen	Media	2~8℃**	Room temperature**	
	eNAT™	90 days	90 days	
Cervical	ThinPrep®	90 days	90 days	
specimen	SurePath™	90 days	90 days	
	CellPreserv	90 days	90 days	
Self-collected vaginal specimen	ThinPrep®	90 days	90 days	

B. Specimen Storage & Transport

* Duration: Specimen collected from the period prior to the test including specimen storage and transport prior to the test.

** Optimum temperature for transport is $2\sim 25$ °C.

Note: Performance may be affected by prolonged storage of specimens.

Note: Specimens should also adhere to local and national instructions for transport of pathogenic material.

2. Nucleic Acid Extraction

Various manufacturers offer nucleic acid extraction kits. Use right amount of sample according to the protocol in use. The following extraction kits have been validated for use with this kit.

[Extraction methods in different medium]

Note: Please use the automated extraction system according to the medium shown in the following table.

		Automated Extraction System			
Specimen	Transport	Microlab NIMBUS IVD / STARlet IVD	Seegene NIMBUS / STARlet	SEEPREP32	STARIet 96MPH
	media	Universal Cartridge Kit	Universal Cartridge Kit	STARMag 96 ProPrep	STARMag [™] S96H N Kit*
	eNAT	0	0	0	0
Cervical	ThinPrep [®]	0	0	0	0
specimen	SurePath™	0	0	х	0
	CellPreserv	0	0	0	0
Self- collected vaginal specimen	ThinPrep®	0	0	0	0

Optional: Vial Cap Management System can be used with Microlab STARlet IVD, and Seegene STARlet. **Optional**: AIOS can be used with Seegene STARlet.

*STARMag[™] S96H N Kit is designed and validated for the use with the configuration of Seegene STARIet with CO-RE 96 Probe Head and Seegene STARIet 96MPH.

A. Pre-treatment of ThinPrep[®] and SurePath[™]

- Equilibrate samples to room temperature (19~25°C).
- Centrifuge 1 mL of specimen for 15 minutes at 15,000 x g (13,000 rpm).
- The supernatant has to be discarded. Afterwards, the recommend volume (200~300 µL, See Recommended Vol. of 2-C) should be resuspended in lysis buffer or 1X PBS by vortexing thoroughly to redissolve.

Note: Process pre-treatment step using 1X PBS if the samples are collected in ThinPrep[®] medium. Note: Process pre-treatment step using lysis buffer from extraction kit if the samples are collected in SurePath[™] medium.

Note: ThinPrep[®] and SurePath[™] media can be processed without pre-treatment when using Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS, Seegene STARlet or Seegene STARlet 96MPH.

Note: CellPreserv and eNAT does not require a pre-treatment step.

B. Specimen Preparation

- Equilibrate samples to room temperature (19~25°C).
- For Cervical specimens and self-collected vaginal specimen which contain a swab/brush in the transport media, specimens should be mixed by vortexing.
- The caps from specimen tubes have to be removed carefully to avoid contamination. Any excess mucus in the specimen should be removed at this time by collecting it on the swab/brush. Any residual liquid from the mucus and the swab/brush should then be expressed by pressing the swab/brush against the side of the tube. Finally, the swab/brush and the mucus should be removed and discarded.
- Specimens from eNAT solution may be processed directly out of their primary container.

C. Automated Nucleic Acid Extraction System

Note: Please use the recommended volumes of specimen and elution as indicated below. For others, refer to the manufacturer's protocol.

C-1. Microlab NIMBUS IVD

Note: See Microlab NIMBUS IVD operation manual.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Microlab NIMBUS IVD	Hamilton	65415-02*	-
STARMag 96 X 4	Seegene	744300.4.	Specimen: 300 µL
Universal Cartridge Kit	Seegene	UC384	Elution: 100 µL

* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

C-2. Microlab STARlet IVD

Option: Pre-analytic System (See Vial Cap Management System operation manual)

Automated Pre-analytic System	Manufacturer	Cat. No.	Recommended Vol.
Vial Cap Management System	Hamilton	6600532-01*	-

* If you would like to purchase the above products from Seegene Inc., please use this catalog number. **NOTE:** Vial Cap Management System can be used with ThinPrep[®] and CellPreserv.

Note: See Microlab STARlet IVD operation manual.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Microlab STARlet IVD	Hamilton	173000-075*	-
STARMag 96 X 4	Sectors	744300.4.	Specimen: 300 µL
Universal Cartridge Kit	Seegene	UC384	Elution: 100 µL

* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

C-3. Seegene NIMBUS

Note: See Seegene NIMBUS operation manual.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Seegene NIMBUS	Seegene	65415-03	-
STARMag 96 X 4	Sectors	744300.4.	Specimen: 300 μL
Universal Cartridge Kit	Seegene	UC384	Elution: 100 μL

C-4. Seegene STARlet

Option: Pre-analytic System (See Vial Cap Management System operation manual)

Automated Pre-analytic System	Manufacturer	Cat. No.	Recommended Vol.
Vial Cap Management System	Hamilton	6600532-01*	-

* If you would like to purchase the above products from Seegene Inc., please use this catalog number. **NOTE:** Vial Cap Management System can be used with ThinPrep[®] and CellPreserv.

Option: Automated Linkage Structure (See AIOS operation manual)

Automated Linkage Structure	Manufacturer	Cat. No.
AIOS	Seegene	SG72100*

* If you would like to purchase the above products from Seegene Inc., please use this catalog number.

NOTE: Replace the cap of the Positive Control (PC) with a pierceable cap. After finishing the operation,

replace the cap of the Positive Control (PC) with the original cap.

NOTE: The pierceable cap is a single-use product and must be disposed of after one use.

NOTE: If this product is used with AIOS applied Seegene STARlet, it provides a maximum of 3 separate runs.

Note: See Seegene STARlet operation manual.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Seegene STARlet	Seegene	67930-03	
STADMag OF X 4 universal contridge Kit	Second	744300.4.	Specimen: 300 µL
STARMag 96 X 4 universal cartridge Kit	Seegene	UC384	Elution: 100 µL
	Seegene	EX00036P	Specimen: 300 µL
STARMag™ S96H N Kit*	Seegene	EX00037P	Elution: 100 µL

* STARMag[™] S96H N Kit is designed and validated for the use with the configuration of Seegene STARlet with CO-RE 96 Probe Head and Seegene STARlet 96MPH.

C-5. SEEPREP32

Note: Proceed the extraction process using 'Pro-Protocol A'.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
SEEPREP32	Seegene	SG71100	-
STARMag 96 ProPrep (Plate Type)	Seegene	EX00009P	Specimen: 200 μL
STARmay so Floriep (Flate Type)	Seegene	EX00009F	Elution: 100 μL
STARMag 96 ProPrep (Tube Type)	Soogono	EX00009T	Specimen: 200 μL
STARway 50 FIOFTep (Tube Type)	Seegene	EX000091	Elution: 100 μL

C-6. Seegene STARlet 96MPH

Note: See Seegene STARIet 96MPH operation manual.

Note: Seegene STARIet 96MPH is only applicable to HP10370X.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Seegene STARlet 96MPH	Seegene	SG71101	-
	Sectors	EX00036P	Specimen: 300 μL
STARMag [™] S96H N Kit	Seegene	EX00037P	Elution: 100 μL

3. Preparation for Real-time PCR

PROVIDED).

Note: When using Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS, Seegene STARlet and Seegene STARlet 96MPH for this step, refer to each operation manual. Note: The correct tubes and caps must be used (see MATERIALS REQUIRED BUT NOT

Note: Aerosol resistant filter tips and tight gloves must be used when preparing specimens. Use an extreme care to ensure no cross-contamination.

Note: Completely thaw the reagents on ice.

Note: Briefly spin down the reagent tubes to remove drops from the inner cap.

Note: The steps A~D are automatically processed on Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS, Seegene STARlet, and Seegene STARlet 96MPH. Refer to each operation manual.

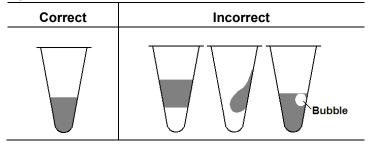
A. Prepare PCR Mastermix.

5 μL	HPV HR MOM
5 μL	EM4
5 μL	EM4 Buffer
15 μL	Total volume of PCR Mastermix

Note: Calculate the necessary amount of each reagent needed based on the number of reactions (samples + controls).

B. Mix by inverting 5 times or quick vortex, and briefly spin down the tubes.

C. Aliquot 15 μ L of the PCR Mastermix into PCR tubes.


D. Add 5 μ L of each sample's nucleic acids into the tube containing PCR Mastermix.

15 μL	PCR Mastermix
5 μL	Sample's nucleic acid
20 μL	Total volume of reaction

E. Close and briefly spin down the PCR tubes.

F. Verify that the liquid containing all PCR components is at the bottom of each PCR tube. If not, spin down again at a higher rpm for a longer time.

Note: It is recommended to spin down PCR tubes before PCR to eliminate air bubbles and collect all residual liquids at the bottom of tubes.

Note: Use a new sterile pipette tip for each sample.

Note: For Negative Control (NC), use 5 μ L of "RNase-free Water" instead of sample's nucleic acid.

Note: For Positive Control (PC), use 5 μL of "Allplex HPV HR PC1", "Allplex HPV HR PC2" and "Allplex HPV HR PC3" instead of sample's nucleic acid.

Note: Be careful not to cross-contaminate the Reaction Mastermix and samples with the Positive Control. **Note:** Do not label the reaction tube on its cap. Fluorescence is detected from the top of each reaction tube.

Positive Control

There are 3 Positive Control tubes included in the kit; Allplex HPV HR PC1, PC2 and PC3.

Each PC includes clones for 5 targets (14 types of high risk and IC).

Note: To run the Positive Control reaction, prepare 3 PCR tubes. (See the results below.)

Positive control

Name		FAM			HEX		Ca	CalRed 610		Quasar 670		Quasar 705			Auto interpretation	
iii aiii o	66	45	58	51	59	16	33	39	52	IC	35	18	56	68	31	
PC1	+	-	-	+	-	-	+	-	-	+	-	-	+	-	-	Positive Control (+)
PC2	-	+	-	-	+	1	-	+	-	-	+	I	-	+	1	Positive Control (+)
PC3	-	-	+	-	-	+	-	-	+	-	-	+	-	-	+	Positive Control (+)

REAL-TIME PCR INSTRUMENT SET UP AND RESULTS ANALYSIS

1. CFX96[™] Real-time PCR Detection System (CFX Manager[™] Software-IVD v1.6)

1.1. Real-time PCR Instrument set up

Note: CFX96[™] Real-time PCR Detection System (Bio-Rad) experiment setup can be divided into 3 steps: Protocol Setup, Plate Setup and Start Run.

A. Protocol Setup

1) In the main menu, select File \rightarrow New \rightarrow Protocol to open Protocol Editor.

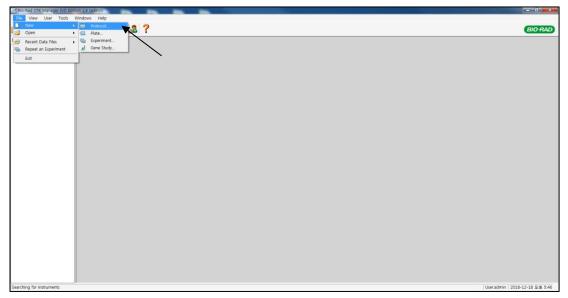


Fig. 1. Protocol Setup

Step	No. of cycles	Temperature	Duration
1	1	95°C	15 min
2		95°C	3 sec
3*	45	60°C	10 sec
4*	45	72°C	10 sec
5*		83°C	5 sec

2) In "**Protocol Editor**", define the thermal profile as follows:

Note*: Plate Read at Step 3, 4 and 5. Fluorescence is detected at 60°C, 72°C and 83°C.

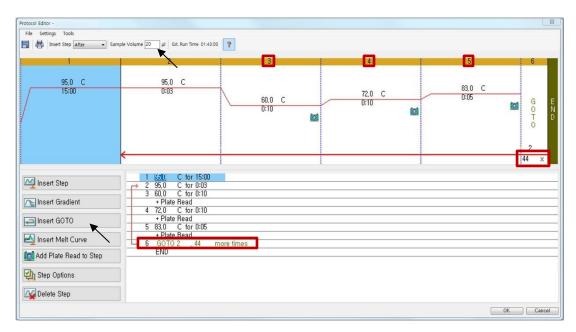


Fig. 2. Protocol Editor

Note: Click the "Insert GOTO" and type in "GOTO 2, 44 more times" at Step 6.

3) Click the box next to "Sample Volume" to directly input 20 μ L.

4) Click **OK** and save the protocol to open the "Experiment Setup" window.

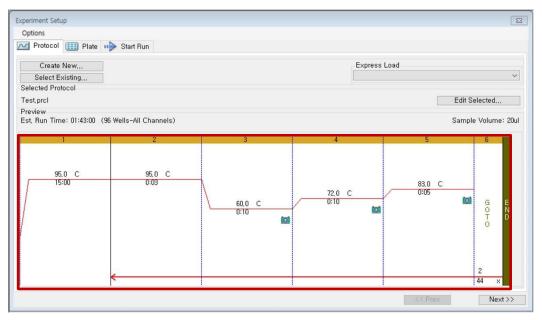


Fig. 3. Experiment Setup: Protocol

B. Plate Setup

Option		Plate 💷 📐 Sta	art Burn									
	Create New								Express QuickPla		Channels, pltd	
		_All Channels,	pitd								Edit S	elected
	phores:	FAM, H	EX, Texas Rec	l, Cy5, Quasar	705			Plate Typ	oe: BR Clear		Scan Mode	: All Channe
- 4	1	2	3	4	5	6	7	8	9	10	11	12
А	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
в	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
с	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
Е	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
G	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
н	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk

1) From "Plate" tab in "Experiment Setup", click "Create New" to open "Plate Editor" window.

Fig. 4. Plate Editor

2) Click "Select Fluorophores" to indicate the fluorophores (*FAM*, *HEX*, *Cal Red 610*, *Quasar 670* and *Quasar 705*) that will be used and click "OK".

	2	3	4	5	6	7 8	9	10 11	12	Select F	luorophores	
			Sele	ect Fluoropho	ores				×	Sample Type		
				Cha	nnel	Fluorophore	Selected	Color				
										Load SYBR	Target Name	
	-		_	1		FAM SYBR					<none></none>	
				2		HEX				Load Sar	nple Name	
			-	-		TET				and the second	ine>	
	-		_			Cal Orange 560		A 1 A 1 A		-		
						Cal Gold 540				Load Rep	ilicate #	
						VIC						
_				3		ROX				Repl		
						Texas Red				🐏 Experim	ient Settings	
			-			Cal Red 610 Tex 615						
				4		Cy5				Longer and Longer	Replicate #	
						Quasar 670				CI 📝	ear Wells	
				5		Quasar 705						
				-				OK Can				

Fig. 5. Select Fluorophores (FAM, HEX, Cal Red 610, Quasar 670 and Quasar 705)

3) Select the wells where the PCR tube will be placed and select its sample type from the

"Sample Type" drop-down menu.

- Unknown: Clinical samples
- Negative Control
- Positive Control

4) Click on the appropriate checkboxes (*FAM*, *HEX*, *Cal Red 610*, *Quasar 670* and *Quasar 705*) to specify the fluorophores to be detected in the selected wells.

5) Type in "Sample Name" and PC (PC1, PC2 and PC3), and then press enter key.

6) In "Settings" of the "Plate Editor" main menu, choose the "Plate Size" (96 wells) and "Plate

Type" (BR White).

	Plate Plate		• 🔯 s	can Mode All BR White	Channels	- (📸 Well Grou	ps 📍						Plate Loading Gui
	Numt	per Conventio	n 🕨	BR Clear	5	6	7	8	9	10	11	12	Select Flu	orophores
4	HEX Cal Red 610 Quasar 670 Quasar 705	HEX Cal Red 610 Quasar 670 Quasar 705	HEX Cal Red 610 Quasar 670 Quasar 705	FAM HEX Cal Red 610 Quasar 670 Quasar 705	P M HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Sample Type	Unknown
3	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Load FAM HEX Cal Red 610	Target Name <none> <none> <none></none></none></none>			
;	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	 ✓ Quasar 670 ✓ Quasar 705 Load 	<none> <none> Sample Name</none></none>				
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Load	<none> Replicate # 1 ate Series</none>			
:	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	EAM FAM HEX Cal Red 610 Quasar 670 Quasar 705	FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705	Experime	ent Settings Replicate #			
-	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	PC1 Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705 PC2	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	PC1 Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705 PC2	r Cle	ar Wells				
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705 PC3	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705 PC3						
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Neg FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	FAM FAM HEX Cal Red 610 Quasar 670 Quasar 705						

Fig. 6. Plate Setup

7) Click "OK" to save the new plate.

Options		Plate 🕠 Sta	art Run									
	reate New lect Existing. d Plate								Express	Load		
Test, plt Preview	d										Edit S	elected
Fluorop	hores:		EX, Cal Red 61	0, Quasar 670,					pe: BR White			: All Channe
A	1	2	3	4	5	6	7	8	9	10	11	12
A	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
в	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
с	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
E	Unk	Unk	Unk	Unk	Unk	Pos	Unk	Unk	Unk	Unk	Unk	Pos
F	Unk	Unk	Unk	Unk	Unk	Pos	Unk	Unk	Unk	Unk	Unk	Pos
ч	Unk	Unk	Unk	Unk	Unk	Pos	Unk	Unk	Unk	Unk	Unk	Pos
н	Unk	Unk	Unk	Unk	Unk	Neg	Unk	Unk	Unk	Unk	Unk	Neg

8) You will be returned to the "Experiment Setup" window.

Fig. 7. Experiment Setup: Plate

9) Click "Next" to start run.

C. Start Run

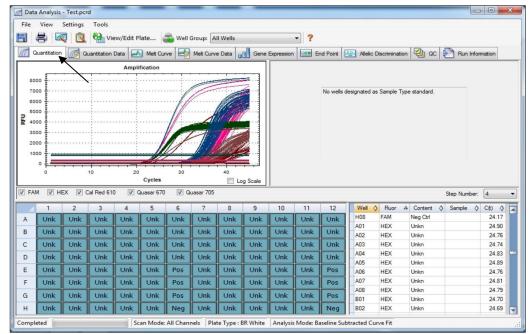
1) From "Start Run" tab in "Experiment Setup", click "Close Lid" to close the instrument lid.

Experiment Set	up				X
Options					
	IIII) Plate III Start Run				
Run Information Protocol :	Allplex.prcl				
	Test.pltd				
Notes :			*		
			-		
Scan Mode :	All Channels				
Start Run on S	Selected Block(s)				
	Block Name A	Туре	Run Status	Sample Volume	ID/Bar Code
BR20	5800	"96FX"	ldle	20	
Select All	P				
-					
💡 Rash B	lock Indicator Open	ud 🖉 C	lose Lid		
					in the second se
			\mathbf{i}		🕨 Stat Run
					<c next="" prev="">>></c>

Fig. 8. Close Lid

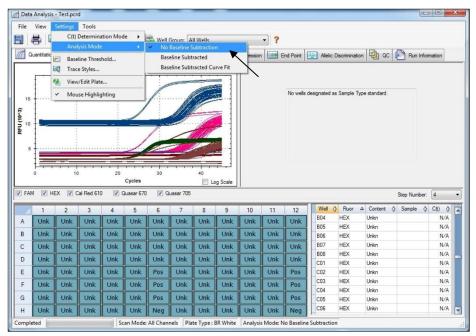
2) Click "Start Run".

3) Store the run file either in My Documents or in a designated folder. Input the file name, click **"SAVE"**, and the run will start.


1.2. Data Analysis

A. Create folders for data export

 To save data of all detection steps of amplification curves from the result file, create one folder.
 Folder name may be as desired by user (For 'Seegene Export' function, folders "QuantStep3", "QuantStep4" and "QuantStep5" are automatically created to save each amplification curve data under the folder created by user).



B. Pre-settings for Data Analysis in CFX96™

1) After the test, click the "Quantitation" tab to see the amplification curve results.

Fig. 9. Amplification curve results

2) Select "No Baseline Subtraction" from Analysis Mode of Settings menu.

Fig. 10. No Baseline Subtraction

File	View	Settings	Tools																
	auantitation		🔯 Im	ports port Fluor place Plate		alibration.	~ Ē	I Wells e Data	Gene I		• ?	nd Point	Alleli	Discrimina	tion 🔁 Q	c 📳 I	Run Infor	mation	
-			Exr	ort All Da	ta Sheets	to Excel	- 1												-
	f	· · · ·		gene Expo			-	1.											
15												No wells o	designated	as Sample	Type standard.				
ŝ	· —		_		and the second														
	0	10 EX 🔽 C	Cal Red 610		Cycles uasar 670	+ i + 30		40 [] Lo	g Scale							Step	Number:	4	
] FA	0						asar 705		g Scale	10	11	12	Well	A Fluor	A Content				
] FA	м 💟 н	EX 🔽 C	Cal Red 610	V Q	uasar 670	Qu		E Lo		10 Unk	11 Unk	12 Unk	B04	HEX	Unkn			Ctt) 👌 N/A	-
] FA	M V HI	EX 🔽 C 2 Unk	Cal Red 610 3 Unk	₹ Q Unk	uasar 670 5 Unk	© Qu 6 Unk	7 Unk	E Lo 8 Unk	9 Unk	Unk	Unk	Unk	B04 B05	HEX	Unkn Unkn			Cê) 👌 N/A N/A	-
A B	M V HI	EX 🔽 C 2 Unk Unk	Cal Red 610 3 Unk Unk	Q 4 Unk Unk	uasar 670 5 Unk Unk	© Qu 6 Unk Unk	7 Unk Unk	E Lo 8 Unk Unk	9 Unk Unk	Unk Unk	Unk Unk	Unk Unk	804 805 806	HEX HEX HEX	Unkn Unkn Unkn			C(t) () N/A N/A N/A	-
] FA	M V HI	EX 🔽 C 2 Unk	Cal Red 610 3 Unk	₹ Q Unk	uasar 670 5 Unk	© Qu 6 Unk	7 Unk	E Lo 8 Unk	9 Unk	Unk	Unk	Unk	804 805 806 807	HEX HEX HEX HEX	Unkn Unkn Unkn Unkn			Cê) () N/A N/A N/A N/A	-
FA A B C	M V HI	EX ☑ C 2 Unk Unk	Cal Red 610 3 Unk Unk	Q 4 Unk Unk	uasar 670 5 Unk Unk	© Qu 6 Unk Unk	7 Unk Unk	E Lo 8 Unk Unk	9 Unk Unk	Unk Unk	Unk Unk	Unk Unk	B04 B05 B06 B07 B08	HEX HEX HEX HEX HEX	Unkn Unkn Unkn Unkn Unkn			C(t) (0) N/A N/A N/A N/A N/A	-
] FA A B C D	M V H	2 Unk Unk Unk Unk	3 Unk Unk Unk Unk Unk	V Q 4 Unk Unk Unk Unk	uasar 670 5 Unk Unk Unk Unk	© Qu 6 Unk Unk Unk Unk	7 Unk Unk Unk Unk	8 Unk Unk Unk Unk	9 Unk Unk Unk Unk	Unk Unk Unk Unk	Unk Unk Unk Unk	Unk Unk Unk Unk	B04 B05 B06 B07 B08 C01	HEX HEX HEX HEX HEX HEX	Unkn Unkn Unkn Unkn Unkn Unkn			C(t) (0) N/A N/A N/A N/A N/A	-
FA A B C D E	M V H	2 Unk Unk Unk Unk Unk	3 Unk Unk Unk Unk Unk Unk	 ✓ Q 4 Unk Unk Unk Unk Unk 	uasar 670 5 Unk Unk Unk Unk Unk	✓ Qu 6 Unk Unk Unk Unk Unk Pos	7 Unk Unk Unk Unk Unk	E Lo 8 Unk Unk Unk Unk Unk	9 Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Pos	B04 B05 B06 B07 B08 C01 C02	HEX HEX HEX HEX HEX HEX HEX	Unkn Unkn Unkn Unkn Unkn Unkn Unkn			C(t) (0) N/A N/A N/A N/A N/A	-
] FA A B C D	M V H	2 Unk Unk Unk Unk Unk Unk	3 Unk Unk Unk Unk Unk Unk Unk	 ✓ Q 4 Unk Unk Unk Unk Unk Unk 	uasar 670 5 Unk Unk Unk Unk Unk Unk	Cunk Unk Unk Unk Unk Pos Pos	7 Unk Unk Unk Unk Unk	E Lo 8 Unk Unk Unk Unk Unk Unk	9 Unk Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk Unk	Unk Unk Unk Unk	Unk Unk Unk Unk	B04 B05 B06 B07 B08 C01	HEX HEX HEX HEX HEX HEX	Unkn Unkn Unkn Unkn Unkn Unkn			C(t) N/A N/A N/A N/A N/A N/A	-
A B C D E	M V H	2 Unk Unk Unk Unk Unk	3 Unk Unk Unk Unk Unk Unk	 ✓ Q 4 Unk Unk Unk Unk Unk 	uasar 670 5 Unk Unk Unk Unk Unk	✓ Qu 6 Unk Unk Unk Unk Unk Pos	7 Unk Unk Unk Unk Unk	E Lo 8 Unk Unk Unk Unk Unk	9 Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Pos	B04 B05 B06 B07 B08 C01 C02 C03	HEX HEX HEX HEX HEX HEX HEX	Unkn Unkn Unkn Unkn Unkn Unkn Unkn Unkn			C(t) N/A N/A N/A N/A N/A N/A N/A N/A	-

3) Select "Seegene Export" from Tools menu.

Fig. 11. Seegene Export

4) Choose a location to save data and click "OK".

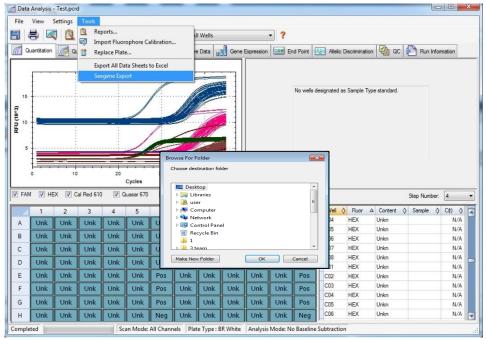


Fig. 12. Seegene Export to designated folder

C. Settings for Data Analysis in Seegene Viewer

1) Open Seegene Viewer program and click "Option" to select CFX96 or CFX96 Dx in the

t rol TANHE Setting Gele Setting rt de C(I) Value 5 unt th office	AF7500 v1.4 AF7500 v2.0 CF086 Dx CF086 Dx OPCOLORING OPCOLORING O	gm for	_		2	8	🖉 Seege
s unt th	genera proprietary Multiples mal-	gm for Diagnostic				9	
	the universalization of MoDx as well a new paradigm for molecular diago	time POE technology drives a is realizing		-			
9		poster.	30				
			4 ⊳				

Fig. 13. Seegene Viewer

2) Click "**Open**" to find the saved file in folder "QuantStep3", open the results file, and select the test kit from the "**PRODUCT**" menu.

0 🝙 📵	Help		3~	1					1			<i>.</i>	
	~ ~	-		PRODUCT	The second secon							Seege	ene
Test - Quan	titation Ct Res	ults,xlsx ×			~								
WELL PLATE				0	MELL GRA	PH							
1 2 3	4 5	6 7 8	9 10	11 12		EX IZ Call	Red 610 🖂 Qua:	sar 670 🖂 Q	uasar 705				
A 000	000				3			3		TTTTT	1	1 1 1 1 1 1	
			ăă	ăă	0.9			0.9			0.9		
				22	0.7			0.8			0.7		
					BE 0.5			BE 0.5			0.6 ± 0.5		_
					0.4			0.4			0.4		
FOOD					0.3			0.3			0.3		
G 🔴 🔴 🗲					0.2			0.2			0.2		
н 🖌 🖓 🍊			A A					0.14					
-	-	Invalid	Combine		0 0.1 0		.5 0.6 0.7 0.8 0. Graph 1)			0.5 0.6 0.7 0.8 0.9 (Graph 2)	0 0.1 0.2	0.3 0.4 0.5 0.6 0.7 0.8 Cycle (Graph 3)	0.
-	-	() Invalid	Combine		0 0.1 0			9 0]		(Graph 2)	0 0.1 0.2	Cycle (Graph 3)	
-	-	1) Invalid	Combine	•••	0 0.1 0			9 0]		(Graph 2)	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	-	Well	Name	Туре	0 0.1 0			9 0 0		(Graph 2)	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01	Name	Type SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01	Name	Type SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01 C01	Name	Type SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
Well Info	ILT	Well A01 B01 C01 D01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01 C01 D01 E01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESL Well Info	ILT	Well A01 B01 C01 D01 E01 F01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01 C01 D01 E01 F01 G01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01 C01 D01 F01 G01 H01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESL Well Into	ILT	Well A01 B01 C01 D01 E01 F01 G01 H01 A02	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
	ILT	Well A01 B01 C01 D01 F01 G01 H01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	

Fig. 14. Settings for Data Analysis in Seegene Viewer

3) Check the result for each well.

le l	and opposit																			
0	0		0		Allplex™ H	HPV HR Detection												1	🛞 Se	egen
1000	Fest - Quanti	tation Ct Rest	ults, xlsx	× 🗉	(.)															
	WELL PLATE				19935	ELL GRAPH														
				9 10 11		M HEX Cal Red 610	0 🗹 Quasar 670	🗹 Quas	ar 705						1911					
A					150	0		15	00						600			_	_	
B					125	0	1	12	50				1	+	500					- 4
C					100	0	/ IC		00				1	39	400					Á
D					E 75			E ,					/		R 300					/1
E					50	1			00						200					/
F				9 🕕 🎯	25				50						100	_				/ 16
G							/ IC		1	_		1	-	39						
н					0	0 401			0.401						0.40	u				
					0	0 10 20	30 40		0 401	10	20		0 4	0			10	20	30	
	Negative				0				4	10	20 Cycle (0	1			20 cle (Gre		40
•	Negative 🥥	Positive 🕕			0	0 10 20			4	10				0	1					40
	Negative 🔴	Positive 🕕			G	0 10 20			4	10			2)		ų			cle (Gra		
	Negative 🔘	Positive 🕕			Ğ	0 10 20		Quat	4	10		Graph 3	2) Positive		ų		Cy	ele (Gra	iph 3) /ertical (
	Negative 🔴	Positive 🕕			Туре	0 10 20		Quan	4	66		Graph 3	2)		ų		Cy	ele (Gra	iph 3)	
	Negative O	Positive 🕕	Invalid [Combine	9	Auto Interpretation	aph 1)		4		Cycle (Graph 1	Positive	Find 🗌	Po	sitive C	Cy	ele (Gra	/ertical () HEX) Horizo
	Negative O	Positive 🕕	Invalid [Combine	Туре	Auto Interpretation High-risk HPV High-risk HPV	aph 1) Remark		ar 670 C(t)		Cycle (C(t)	Graph 1	Positive FAM C(t)	Find 🗌	C(t)	sitive C	Cy heck IIII C(t)	ele (Gra	lph 3) /ertical () HEX ((t)) Horizo
	Negative O	Positive 🕕	Well	Combine	Type SAMPLE SAMPLE SAMPLE	Auto Interpretation High-risk HPV High-risk HPV High-risk HPV	Remark	ю	ar 670 C(t) 25,67	66	Cycle (C(t) N/A	Graph 3	Positive FAM C(t) N/A	Find	C(t)	sitive C 51	Cy heck IIII C(t) N/A	(Gre	Aph 3) /ertical C HEX C(t) N/A) Horiza 16
	Negative O	Positive 🕕	Well 401 801 C01 D01	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE	Auto Interpretation High-risk HPV High-risk HPV High-risk HPV	Remark 16,39 51,39 39,52 66,39,52	IC	ar 670 C(t) 22.52 25.92 22.42	66	Cycle (C(t) N/A N/A N/A 24,98	Graph 2 45 -	Positive FAM C(t) N/A N/A	Find []	C(t) N/A	sitive C 51	Cy heck IIII C(t) N/A 31.67 N/A N/A	(Gra (Gra 59 -	/ertical () HEX C(t) N/A) Horizo 16 -
	Negative O	Positive 🕕	Well A01 B01 C01	Combine	Type SAMPLE SAMPLE SAMPLE	Auto Interpretation High-risk HPV High-risk HPV High-risk HPV High-risk HPV	eph 1) Remark 16.39 51.39 39.52	ю •	ar 670 C(t) 22.52 25.92	66 - -	Cycle (C(t) N/A N/A	Graph 2 45 - -	Positive AM C(t) N/A N/A	Find []	C(t) N/A N/A	sitive C 51	Cy heck C(t) N/A 31.67 N/A	(Gra	Pertical C HEX C(t) N/A N/A N/A) Horizo 16 -
	Negative O	Positive 🕕	Well 401 801 C01 D01	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	Auto Interpretation Cycle (Gr High-risk HPV High-risk HPV High-risk HPV High-risk HPV	Remark 16,39 51,39 39,52 66,39,52	ю • •	ar 670 C(t) 22,52 25,92 22,42 25,64 23,08	66 - - +	Cycle (C(t) N/A N/A N/A 24,98 N/A N/A	Graph 2 45 - -	Positive C(t) N/A N/A N/A	Find []	C(t) N/A N/A N/A	sitive C 51	Cyr heck C(t) N/A 31.67 N/A 18.81 N/A	(Gra	Ph 3) Vertical C HEX C(t) N/A N/A N/A) Horizo
	Negative O	Positive 🕕	well A01 B01 C01 D01 E01	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	Auto Interpretation Cycle (Gr High-risk HPV High-risk HPV High-risk HPV High-risk HPV High-risk HPV High-risk HPV High-risk HPV	Remark 16.39 51.39 39.52 66.39.52 51.56	Ю 	ar 670 C(t) 22,52 25,92 22,42 25,64 23,00 24,28	66 - - -	Cycle (C(t) N/A N/A N/A 24,98 N/A N/A N/A	Graph 2 45 - - -	Positive AM C(t) N/A N/A N/A N/A	Find 58	C(t) N/A N/A N/A N/A N/A N/A	sitive C 51	Cyr heck C(t) N/A 31.67 N/A 31.87 N/A 18.81 N/A N/A	(Gra (Gra 59 - - - - -	/ertical () HEX C(t) N/A N/A N/A N/A N/A	16 + - - -
	Negative O	Positive 🕕	well A01 B01 C01 D01 E01 F01	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	Auto Interpretation Cycle (Gr High-risk HPV High-risk HPV High-risk HPV High-risk HPV	Remark 16.33 51.39 33.52 56.39.52 51.56 18	IC 	ar 670 C(t) 22,52 25,92 22,42 25,64 23,08	66 - - -	Cycle (C(t) N/A N/A N/A 24,98 N/A N/A	Graph 2 45 - - - -	Positive FAM C(t) N/A N/A N/A N/A N/A	Find	C(t) N/A N/A N/A N/A N/A	sitive C 51 - - -	Cyr heck C(t) N/A 31.67 N/A 18.81 N/A	(Gra (Gra)))))))))))))	/ertical () HEX C(t) N/A N/A N/A N/A N/A N/A	16

Fig. 15. Test result on Seegene Viewer

4) Validation Criteria of Control Results

a. Valid Assay Run

To check the validation of experiments, the PCR runs should be accompanied with PC (Positive Control) and NC (Negative Control). Assay run is determined as valid when all of the following criteria are met:

								Seegen	e Viewei	r Result						
Control		FAM (Ct))		HEX (Ct)		Cal	Red 610	(Ct)	Qua	asar 670	(Ct)	Qua	sar 705	(Ct)	Auto
	66	45	58	51	59	16	33	39	52	IC	35	18	56	68	31	Interpretation
Positive	15≤Qt≤31	_	_	Positive												
Control 1	1020201			10_01_01			10-0-01			10204201			1020201			Control(+)
Positive	_	15≤Qt≤31	_	Positive												
Control 2		10-0-01			10-01-01			10-0-01			10_0_01			10204201		Control(+)
Positive	-	-	15≤Qt≤31	-	-	15≤Qt≤31	-	_	15≤Qt≤31	_	_	15≤Qt≤31	_	_	15≤Qt≤31	Positive
Control 3			1020201			1020201			1020201			1020201			1020201	Control(+)
Negative	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Negative
Control																Control(-)

b. Invalid Assay Run

In case of a validation failure, the results should not be interpreted or reported. And the PCR reaction must be repeated.

2. CFX96[™] Dx System (CFX Manager[™] Dx Software v3.1)

2.1 Real-time PCR Instrument Setup

Note: CFX96[™] Dx System (Bio-Rad) experiment setup can be divided into 3 steps: Protocol Setup, Plate Setup, and Start Run.

A. Protocol Setup

1) In the main menu, select "File" → "New" → "Protocol" to open "Protocol Editor".

	FX M	lanager E	0x (admin)							<u></u>		X
File	Vi	iew Us	er Run	Tools	Win	dows	Help					
	Ne	w				1.4	Protocol			C	BIO RAI	
1	Ор	en			•		Plate	`				_
-	Rec	cent Data	Files		•	8	Gene Study					
4	Rep	peat a Ru	n			_						
	Exit	t										
No in	strum	nent dete	ccted after	120 secoi	nds.			Startup Wizad Run setup Select instrument CFX96 Analyze Select run type User-defined	admin	03/04/	2021 11:5	5

Fig. 1. Protocol Setup

Step	No. of cycles	Temperature	Duration
1	1	95°C	15 min
2		95°C	3 sec
3*	45	60°C	10 sec
4*	45	72°C	10 sec
5*		83°C	5 sec

2) In "**Protocol Editor**", define the thermal profile as follows:

Note*: Plate Read at Step 3, 4 and 5. Fluorescence is detected at 60°C, 72°C and 83°C.

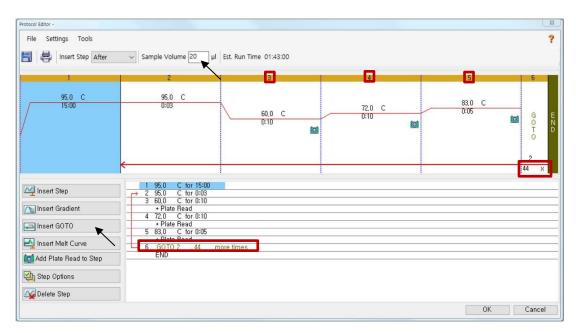


Fig. 2. Protocol Editor

Note: Click the "Insert GOTO" and type in "GOTO 2, 44 more times" at Step 6.

3) Click the box next to "Sample Volume" to directly input 20 $\mu\text{L}.$

4) Click OK and save the protocol to open the **Run Setup** window.

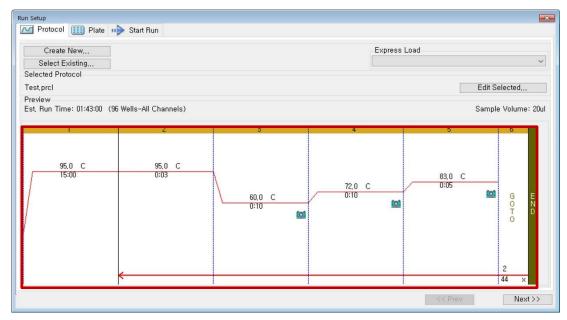


Fig. 3. Run Setup: Protocol

B. Plate Setup

Run Set		Plate 🕠 🤅	Start Run									83
	Create New,								Express Lo		Channels, pitd	
	elect Existing ted Plate									90 Wells_All (_nanneis,pito	•
Quick Previe		s_All Channel	s.pltd								Edit Se	lected
	phores:	FAM, H	EX, Texas Re	ed, Cy5, Quas	ar 705			Plate Typ	e: BR Clear		Scan Mode	All Channels
	1	2	3	4	5	6	7	8	9	10	11	12
A	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
в	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
С	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
Е	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
Gi	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
н	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
,										<< Pr	ev	Next >>

1) From "Plate" tab in "Run Setup", click "Create New" to open "Plate Editor" window.

Fig. 4. Plate Editor

2) Click "Select Fluorophores" to indicate the fluorophores (*FAM, HEX, Cal Red 610, Quasar* 670, *Quasar 705*) that will be used and click "OK".

A Select Fluorophores Sample Transmission B C Channel Fluorophore Selected Color	Target Name
C C <thc< th=""> C C C C<th></th></thc<>	
Image: Constraint of the second se	
SYBR Load 2 HEX Cal Orange 560 Cal Gold 540	KIIOHEX
Load	
Image: Coll Orange 560 Image: Coll Orange 560 Image: Coll Orange 560 Image: Coll Orange 560 Image: Coll Orange 560 Image: Coll Orange 560 Image: Coll Orange 560 Image: Coll Orange 560	Sample Name
Cal Orange 560 Cal Gold 540 Load	<none></none>
Cal Gold 540	
	Replicate #
VIC	1
3 ROX	Replicate Series
Cal Red 610	Experiment Settings
Tex 615	Clear Replicate #
4 Cy5 Cussr 670 C	Clear Wells
5 Quasar 705	

Fig. 5. "Select Fluorophores" (FAM, HEX, Cal Red 610, Quasar 670 and Quasar 705)

3) Select the wells where the PCR tube will be placed and select its sample type from the **"Sample Type"** drop-down menu.

- Unknown: Clinical samples
- Negative Control

Seegene

- Positive Control

4) Click on the appropriate checkboxes (*FAM*, *HEX*, *Cal Red 610*, *Quasar 670* and *Quasar 705*) to specify the fluorophores to be detected in the selected wells.

5) Type in "Sample Name" and PC (PC1, PC2 and PC3), and then press enter key.

6) In "Settings" of the "Plate Editor" main menu, choose the "Plate Size" (96 wells) and

"Plate Type" (BR White).

late Ed	itor - Test.pl	ltd														×
File	Settings	Editing Tool	s													?
1	Plate Plate		► All C	Channels BR White		Well Group	os 🔀 Trac	e Styles 🗐	Spreadshee	t View/Impor	ter				Plate Loading	Guid
	Numl Units	ber Conventio	on 🖡	BR Clear	5 Unit FAM	6 Unk FAM	7 Unk FAM	8 Unk FAM	9 Unk FAM	10 Unk FAM	11 Unk FAM	12 Unk FAM	-	👥 Select Flu	orophores	
	HEX Cal Red 610 Quasar 670 Quasar 705	HEX Cal Red 610 Quasar 670 Quasar 705	HEX Cal Red 610 Quasar 670 Quasar 705	HEX Cal Red 610 Quasar 670 Quasar 705	HEX Cal Red 610 Quasar 670 Quasar 705	HEX Cal Red 610 Quasar 670 Quasar 705	HEX Cal Red 610 Quasar 670 Quasar 705		Sample Type	Unknown Target Name						
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705		✓ FAM ✓ HEX ✓ Cal Red 610 ✓ Quasar 670	<none> <none> <none></none></none></none>						
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	=	👿 Quasar 705	<none> <none></none></none>						
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705		Load Repli	cate #						
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705 PC1	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705 PC1		Experime	ate Series nt Settings leplicate #					
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705 PC2	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705 PC2		Clea	er Wells					
	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unk FAM HEX Cal Red 610 Quasar 670 Quasar 705	Unic FAM HEX Cal Red 610 Quasar 670 Quasar 705	Pos FAM HEX Cal Red 610 Quasar 670 Quasar 705	-							
Plate	Type: BR V	White Viev		/ell Group 🔳	Biological S	Set 📰 Well	Note]						OK	Cance	1

Fig. 6. Plate Setup

7) Click "**OK**" to save the new plate.

	Create New	,							Express Load			
9	Select Existin							1	Enpress Louis			
	ted Plate	·9…						, L				
luick	Plate_96 we	IIs_All Chann	iels, pltd								Edit Se	lected
revi	ew											
luor	ophores:	FAM,	HEX, Cal Red	l 610, Quasar	670, Quasar	705		Plate Type	e: BR White		Scan Mode	All Channe
4	1	2	3	4	5	6	7	8	9	10	11	12
A	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
в	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
C	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Pos	Unk	Unk	Unk	Unk	Unk	Pos
F	Unk	Unk	Unk	Unk	Unk	Pos	Unk	Unk	Unk	Unk	Unk	Pos
lii	Unk	Unk	Unk	Unk	Unk	Pos	Unk	Unk	Unk	Unk	Unk	Pos
н	Unk	Unk	Unk	Unk	Unk	Neg	Unk	Unk	Unk	Unk	Unk	Neg

8) You will be returned to the "Run Setup" window.

- Fig. 7. Run Setup: Plate
- 9) Click "Next" to start run.

C. Start Run

1) From "Start Run" tab in "Run Setup", click "Close Lid" to close the instrument lid.

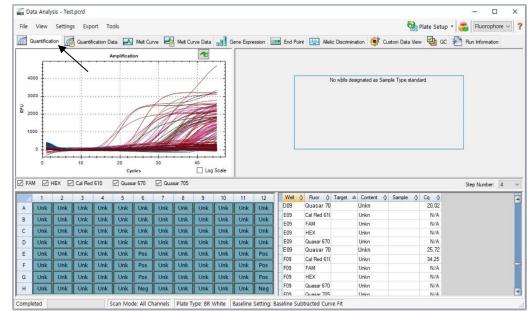
Run Setup								—
M Protocol		🕪 🔪 Nart R	un					
-Run Informati								
	Allplex.prcl							
Notes:	Test.pltd							^
								$\hat{}$
0	All Channels							×
Scan Mode: Start Run on S								
	Block Na		∆ Ty		Run Status	Sample Volume	ID/Bar	Code
BR20		ile .	"96FX"	<i>/c</i>	Idle	20		code
						_		
Select All	Blocks							
		28	0		Close Lid			
🔵 Flash Bl	lock Indicator		Open Lid		Close Lid			
							>	Start Run
							7	otarcituri
							<< Prev	Next >>

Fig. 8. Close Lid

2) Click "Start Run".

3) Store the run file either in My Documents or in a designated folder. Input the file name, click **"SAVE"**, and the run will start.

2.2. Data Analysis


A. Create folders for data export

1) To save data of all detection steps of amplification curves from the result file, create one folder.

2) Folder name may be as desired by user (For 'Seegene Export' function, folders "QuantStep3", "QuantStep4" and "QuantStep5" are automatically created to save each amplification curve data under the folder created by user).

B. Pre-settings for Data Analysis in CFX96™

1) After the test, click the "Quantification" tab to see the amplification curve results.

Fig. 9. Amplification curve results

Eile	⊻iew	Şetti	ngs <u>E</u> xp	ort Io	ols												6	Plate Se	tup -	Fluore	phore	×
10	uantifica		Cq Deter	mination	Mode			Melt Cu	rve Data	al G	iene Expre	esion in	End Poi	nt 🔛 Allei	lic Discrimina	tion 🎯 Ci	ustom Data V	iew 🐑	oc 🎮	Run Inform	ation	
		#2	Baseline 1	setting				No Bas	eline Sul	btraction	s):	-	-									_
10	F		Analysis I Cycles to				•		e <u>S</u> ubtra e Subtra		rve Fit	$\overline{\ }$										
9	1-		Baseline 1				-	Apply	Fluoresce	ence Drif	ft Correc	tion	Γ	1	No wells desi	ignated as San	iple Type sta	ndard.				
- 1			_ ∏race Sty	les				4	£													
		6	<u>Plate</u> Seti Include A		ed Wells		•		2													
		~	Mouse H Restore D		-	ayout							_									
3	0	~	Restore D	efault W	20 Cycl	les	30													10		
4	0	HEX	Restore D	efault W	indow La	les	30		40 [] Log	Scale										Step Numb	er. 4	
3	M 1	2	Restore D 10 Cal Rec 3	efault W 610 4	20 Cycl	les ar 670 6	30 Qua 7	sar 705 8	40 Log 9	Scale	11	12				Content Ø	Sample			Step Numb	er. 4	
3	0	HEX 2 Unk	Restore D 10 Cal Rec 3	efault W	20 Cycl	les ar 670	30		40 [] Log	Scale	11 Unk	12 Unk	B08	Cal Red 6		Unkn	Sample	N/A		Step Numb	er. 4	
4 3 FAJ	M 1	2	Restore D 10 Cal Rec 3 Unk	efault W 610 4	20 Cycl	les ar 670 6	30 Qua 7	sar 705 8	40 Log 9	Scale	-	-	B08 B08	Cal Red 6 FAM		Unkn Unkn	Sample	N/A N/A		Step Numb	er: 4	
4 3 FAI	M D 1 Unk	2 Unk	Restore D 10 Cal Rec 3 Unk Unk	efault W 610 4 Unk	20 Cycl Quas 5 Unk	ies ar 670 6 Unk	30 Qua 7 Unk	sar 705 S Unk	40 C Log 9 Unk	Scale 10 Unk	Unk	Unk	B08 B08 B08	Cal Red 6 FAM HEX		Unkn Unkn Unkn	Sample	N/A N/A N/A		Step Numb	er: 4	
4 3 FAI A B C	N S 1 Unk Unk Unk	2 Unk Unk	Restore D 10 Cal Rec 3 Unk Unk Unk	610 4 Unk Unk Unk	indow La 20 Cyel Quass 5 Unk Unk Unk	es ar 670 6 Unk Unk Unk	∑ 30 Qua 7 Unk Unk Unk	sar 705 8 Unk Unk Unk	40 Log 9 Unk Unk Unk	10 Unk Unk Unk	Unk Unk Unk	Unk Unk Unk	B08 B08	Cal Red 6 FAM		Unkn Unkn	Sample	N/A N/A N/A N/A		Step Numb	er. 4	
4 3 FAI A B C D	N 2 Unk Unk Unk Unk	2 Unk Unk Unk	Restore D 10 Cal Rec 3 Unk Unk Unk Unk	s 610 4 Unk Unk Unk Unk	indow La 20 Cycl Quas 5 Unk Unk Unk Unk	es ar 670 G Unk Unk Unk Unk	30 √ Quar 7 Unk Unk Unk Unk	sar 705 8 Unk Unk Unk Unk	40 Cog S Unk Unk Unk Unk	10 Unk Unk Unk Unk	Unk Unk Unk Unk	Unk Unk Unk Unk	808 808 808 806 808 808	Cal Red 6 FAM HEX Quasar 67		Unkn Unkn Unkn Unkn	Sample	N/A N/A N/A		Step Numb	er 4	
4 3 FAI A B C D E	M S 1 Unk Unk Unk Unk Unk	2 Unk Unk Unk Unk	Restore D 10 Cal Rec Unk Unk Unk Unk Unk	efault W 6 610 4 Unk Unk Unk Unk Unk	20 Cycl Quass 5 Unk Unk Unk Unk Unk	es ar 670 6 Unk Unk Unk Unk Pos	30 20 20 20 20 20 20 20 20 20 2	sar 705 S Unk Unk Unk Unk Unk	9 Unk Unk Unk Unk Unk Unk	10 Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Unk Pos	808 808 808 808	Cal Red 6 FAM HEX Quasar 67 Quasar 70		Unkn Unkn Unkn Unkn Unkn	Sample	N/A N/A N/A N/A		Step Numb	er. 4	
4 3 FAI A B C D E	N 2 Unk Unk Unk Unk	2 Unk Unk Unk	Restore D 10 Cal Rec Unk Unk Unk Unk Unk	s 610 4 Unk Unk Unk Unk	indow La 20 Cycl Quas 5 Unk Unk Unk Unk	es ar 670 G Unk Unk Unk Unk	30 √ Quar 7 Unk Unk Unk Unk	sar 705 8 Unk Unk Unk Unk	40 Clog 9 Unk Unk Unk Unk	10 Unk Unk Unk Unk	Unk Unk Unk Unk	Unk Unk Unk Unk	B08 B08 B08 B08 B08 C08	Cal Red 6 FAM HEX Quasar 67 Quasar 70 Cal Red 61(Unkn Unkn Unkn Unkn Unkn Unkn	Sample	N/A N/A N/A N/A N/A		Step Numb	er: [4	
3	M S 1 Unk Unk Unk Unk Unk	2 Unk Unk Unk Unk	Restore D 10 Cal Rec 3 Unk Unk Unk Unk Unk Unk Unk	efault W 6 610 4 Unk Unk Unk Unk Unk	20 Cycl Quass 5 Unk Unk Unk Unk Unk	es ar 670 6 Unk Unk Unk Unk Pos	30 20 20 20 20 20 20 20 20 20 2	sar 705 S Unk Unk Unk Unk Unk	9 Unk Unk Unk Unk Unk Unk	10 Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Unk Pos	B08 B08 B08 B08 B08 C08 C08	Cal Red 6 FAM HEX Quasar 67 Quasar 70 Cal Red 610 FAM		Unkn Unkn Unkn Unkn Unkn Unkn	Sample	N/A N/A N/A N/A N/A N/A		Step Numb	o . [4	

2) Select "No Baseline Subtraction" from Baseline Setting of Settings menu.

Fig. 10. No Baseline Subtraction

n Da	ta Analy	sis - Test	t.pcrd																			3
ile	View	Setting	s Exp	ort To	ols												6	Plate	Setup •	-	Fluoroph	ore ~
1	uantifical	tion			All Data		•	Melt Cu	rve Data	G	ene Expre	ession	End Poir	nt 🔛 Allei	ic Discrimina	ation 🔅 Ci	ustom Data V	iew 🔤	ac a	Ru	n Informatio	n
					n Export to LIMS				~													
10	1							/														
9	1-			Seege	ne Export	3	R	·····	/						No wells des	ignated as San	nple Type sta	ndard.				
8		-				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			T.													
7			1				-	-														
6	1					-	7.2	10 / 10 m														
5	+				1/2	14	A		1													
4			-	-	- d	12-12	1400															
																				_		
	+		1.		T		11															
	•		10	• • •	20		30		40	Scale												
3	0				Cycl			n 1 1	40 □ Log	Scale												
3		-] Cal Red		Cycl	ar 670	Qua		Log											Ste	p Number:	4
3 FAI	1	2] Cal Red	4	Cycl Cycl Quas 5	ar 670 6	Qua 7	8	Log	10	11	12			Target △	Content 🔇	Sample			Ste	p Number:	4
3 FAI		-] Cal Red		Cycl	ar 670	Qua		Log		11 Unk	12 Unk	A07	FAM	Target △	Unkn	Sample	N	I/A	Ste	p Number:	4
3	1	2] Cal Red	4	Cycl Cycl Quas 5	ar 670 6	Qua 7	8	Log	10		-	A07 A07		Target △	Unkn Unkn	Sample	N	I/A I/A	Ste	p Number:	4
3 FAI	1 0 1 Unk	2 Unk	Cal Red 3 Unk	4 Unk	Cycl Cycl Quas 5 Unk	ar 670 6 Unk	✓ Qua 7 Unk	8 Unk	9 Unk	10 Unk	Unk	Unk	A07	FAM	Target △	Unkn	Sample	N 1	I/A	Ste	p Number:	4
3 FA	1 Unk Unk	2 Unk Unk	Cal Red 3 Unk Unk	4 Unk Unk	Cycl Cycl Cyclass Cyclass 5 Unk Unk	er 670 6 Unk Unk	Qua Qua T Qua Unk Unk	8 Unk Unk	9 Unk Unk	10 Unk Unk	Unk Unk	Unk Unk	A07 A07 A07	FAM HEX Quasar 670		Unkn Unkn Unkn	Sample	1	I/A I/A I/A	Ste	p Number:	4
3	1 Unk Unk Unk Unk	2 Unk Unk Unk Unk	Cal Red 3 Unk Unk Unk Unk	4 Unk Unk Unk Unk	Cycl Quass 5 Unk Unk Unk Unk	er 670 6 Unk Unk Unk Unk Unk	 ✓ Qua 7 Unk Unk Unk Unk 	8 Unk Unk Unk Unk	9 Unk Unk Unk Unk	10 Unk Unk Unk Unk	Unk Unk Unk Unk	Unk Unk Unk Unk	A07 A07 A07 A07 A07	FAM HEX Quasar 670 Quasar 705		Unkn Unkn Unkn Unkn	Sample	1 1 1 1	I/A I/A I/A I/A	Ste	p Number:	4
3	1 ≥ 1 Unk Unk Unk Unk Unk	2 Unk Unk Unk Unk Unk	Cal Red 3 Unk Unk Unk Unk Unk	4 Unk Unk Unk Unk Unk	Cycl Quas 5 Unk Unk Unk Unk Unk	er 670 6 Unk Unk Unk Unk Pos	Qua 7 Unk Unk Unk Unk Unk	8 Unk Unk Unk Unk Unk	9 Unk Unk Unk Unk Unk	10 Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Unk Pos	A07 A07 A07 A07 B07	FAM HEX Quasar 670 Quasar 705 Cal Red 610		Unkn Unkn Unkn Unkn	Sample	1 1 1 1	I/A I/A I/A I/A	Ste	p Number:	4
3	1 Unk Unk Unk Unk	2 Unk Unk Unk Unk	Cal Red 3 Unk Unk Unk Unk	4 Unk Unk Unk Unk	Cycl Quass 5 Unk Unk Unk Unk	er 670 6 Unk Unk Unk Unk Unk	 ✓ Qua 7 Unk Unk Unk Unk 	8 Unk Unk Unk Unk	9 Unk Unk Unk Unk	10 Unk Unk Unk Unk	Unk Unk Unk Unk	Unk Unk Unk Unk	A07 A07 A07 A07 B07 B07	FAM HEX Quasar 670 Quasar 705 Cal Red 610 FAM		Unkn Unkn Unkn Unkn Unkn Unkn	Sample	1 1 1 1 1 1 1	I/A I/A I/A I/A I/A	Ste	o Number:	4
FA	1 ≥ 1 Unk Unk Unk Unk Unk	2 Unk Unk Unk Unk Unk	Cal Red 3 Unk Unk Unk Unk Unk	4 Unk Unk Unk Unk Unk	Cycl Quas 5 Unk Unk Unk Unk Unk	er 670 6 Unk Unk Unk Unk Pos	Qua 7 Unk Unk Unk Unk Unk	8 Unk Unk Unk Unk Unk	9 Unk Unk Unk Unk Unk	10 Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Unk Pos	A07 A07 A07 A07 B07 B07 B07 B07 B07 B07	FAM HEX Quasar 670 Quasar 705 Cal Red 610 FAM HEX Quasar 670 Quasar 705		Unkn Unkn Unkn Unkn Unkn Unkn Unkn Unkn	Sample	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I/A I/A I/A I/A I/A I/A I/A	Ste	p Number:	4
	1 Unk Unk Unk Unk Unk Unk	2 Unk Unk Unk Unk Unk	Cal Red 3 Unk Unk Unk Unk Unk Unk	4 Unk Unk Unk Unk Unk	Cycl Cycl Cuase Cunk Unk Unk Unk Unk Unk	ar 670 6 Unk Unk Unk Unk Pos Pos	Qua 7 Unk Unk Unk Unk Unk Unk	8 Unk Unk Unk Unk Unk	9 Unk Unk Unk Unk Unk Unk	10 Unk Unk Unk Unk Unk Unk	Unk Unk Unk Unk Unk	Unk Unk Unk Pos Pos	A07 A07 A07 A07 B07 B07 B07 B07 B07	FAM HEX Quasar 670 Quasar 705 Cal Red 610 FAM HEX Quasar 670		Unkn Unkn Unkn Unkn Unkn Unkn Unkn	Sample	N P P P P P P P	I/A I/A I/A I/A I/A I/A	Ste	p Number:	4

3) Select "Seegene Export" from Export menu.

4) Choose a location to save data and click "OK".

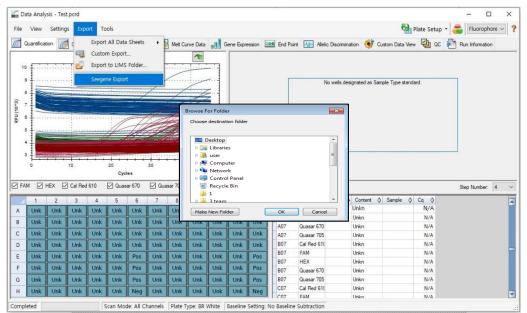


Fig. 12. Seegene Export to designated folder

C. Settings for Data Analysis in Seegene Viewer

1) Open Seegene Viewer program and click "Option" to select CFX96 or CFX96 Dx in the

🙄 Seegene Vi	ewer		
File Edit C	Option Help		
0	Instrument. Language Wild Control Standard Setting Nombur/STARiet Setting Sample Index Setting As Is Export Export All Apply Mode Negative C(t) Value Print Items	A 47500 1/4 A 87500 1/2 0.5 C FX86 Dx	🕜 Seegene
	User Account Export Path TestKit Profile	lew paradigm for <u>Aolecular Diagnostics</u> end property Might and the VR the holding if there and accelerates the endershift of MORa and an undergo	
		4 b	

Fig. 13. Seegene Viewer

2) Click "**Open**" to find the saved file in folder "QuantStep3", open the results file, and select the test kit from the "**PRODUCT**" menu.

0 🝙 📵	Help		3~	1					1			0	
	~ ~	-		PRODUCT	T							Seege	ene
Test - Quan	titation Ct Res	ults,xlsx ×			~								
WELL PLATE				0	MELL GRA	PH							
1 2 3	4 5	6 7 8	9 10	11 12		EX IZ Call	Red 610 🖂 Qua:	sar 670 🖂 Q	uasar 705				
A 000	000				3			3		TTTTT	1	1 1 1 1 1 1	
			ăă	ăă	0.9			0.9			0.9		
				22	0.7			0.8			0.7		
					BE 0.5			BE 0.5			0.6 ± 0.5		_
					0.4			0.4			0.4		
FOOD					0.3			0.3			0.3		
G 🔴 🔴 🗲					0.2			0.2			0.2		
н 🖌 🖓 🍊			A A					0.14					
-	-	() Invalid	Combine		0 0.1 0		.5 0.6 0.7 0.8 0. Graph 1)			0.5 0.6 0.7 0.8 0.9 (Graph 2)	0 0.1 0.2	0.3 0.4 0.5 0.6 0.7 0.8 Cycle (Graph 3)	0.
-	-	() Invalid	Combine		0 0.1 0			9 0]		(Graph 2)	0 0.1 0.2	Cycle (Graph 3)	
-	-	1) Invalid	Combine	•••	0 0.1 0			9 0]		(Graph 2)	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	-	Well	Name	Туре	0 0.1 0			9 0 0		(Graph 2)	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01	Name	Type SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01	Name	Type SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01 C01	Name	Type SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
Well Info	ILT	Well A01 B01 C01 D01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01 C01 D01 E01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESL Well Info	ILT	Well A01 B01 C01 D01 E01 F01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01 C01 D01 E01 F01 G01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESU	ILT	Well A01 B01 C01 D01 F01 G01 H01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
APPLY RESL Well Into	ILT	Well A01 B01 C01 D01 E01 F01 G01 H01 A02	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	
	ILT	Well A01 B01 C01 D01 F01 G01 H01	Name	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	0 0.1 0	Cycle (Graph 1)	9 0	Cycle	(Graph 2) Po	0 0.1 0.2	Cycle (Graph 3)	

Fig. 14. Settings for Data Analysis in Seegene Viewer

3) Check the result for each well.

	dit Option	Help																		
0	08		0		, Allplex™ i	HPV HR Detection												1	🛞 Se	egen
1000		tation Ct Rest	ults, xlsx	× 🗉	(.)															
•	ELL PLATE				155031 770000102222	ELL GRAPH														
		4 5 6				M HEX Cal Red 610	🛛 🗹 Quasar 670	Quas:	ar 705											
A I					150	0		15	00						600					
в					125	1	4	12	4				1	+	500					- 4
C (100	24 I	/ IC	10	- 1				/	39	400					
D	1 0 0 0				P I 75			2 7							R 300					/1
E					G ~ /3	1			00				1		200					1
F							1						/							/ 16
G					25	1	/ IC	2	50			1	(39	100	-				/ "
н	ă ă ă		000	000	a	0 401	<u> </u>		0 401			_			0.94	11		-		
					G	0 10 20	30 40		4	10	20			0	ų		10	20	30	40
•	Negative 🔘	Positive 🕕			G	0 10 20 Cycle (Gri			4	10		3 Graph 2		0	ų			20 cle (Gra		40
		Positive 🕕			G				4	10						ositive C		cle (Gra		
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	Invalid [Combine		Cycle (Gr	aph 1)	Quas	ar 670	10		Graph 3	2)			ositive C	Cy	ele (Gra	iph 3)	
	Negative 🥥 PPLY RESULT	Positive 🕕			Туре	Cycle (Gr		Quas		66		Graph 3	2) Positive			ositive C	Cy	ele (Gra	iph 3) /ertical (
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	Well	Combine	Type	Cycle (Gr Auto Interpretation High-dak HPV	Remark	ю	ar 670 C(t) 25.67	66	Cycle (C(t) N/A	Graph 3	Positive FAM C(t) N/A	Find 58	C(t)	51	Cy theck	(Gre	Aph 3) /ertical C HEX C(t) N/A) Horizo 16
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	Well A01 B01	Combine	Type SAMPLE SAMPLE	Cycle (Gr Auto Interpretation High-risk HPV High-risk HPV	Remark 16,39 51,39	IC	ar 670 C(t) 25.67 22.52	66	Cycle (C(t) N/A N/A	Graph 2 45 -	Positive FAM C(t) N/A N/A	Find 58 -	C(t) N/A N/A	51	Cy heck C(t) N/A 31.67	(Gra (Gra 59 -	/ertical () HEX C(t) N/A N/A) Horizo 16 -
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	Well A01 B01 C01	Combine	Type SAMPLE SAMPLE SAMPLE	Cycle (Gr Auto Interpretation High-risk HPV High-risk HPV High-risk HPV	Remark 16.39 51.39 39.52	IC •	ar 670 C(t) 25.67 22.52 25.92	66 - -	Cycle (C(t) N/A N/A	Graph 2 45 - -	Positive AM C(t) N/A N/A	Find	C(t) N/A N/A N/A	51 -	Cy heck C(t) N/A 31,67 N/A	(Gra	Pertical C HEX C(t) N/A N/A N/A) Horiza 16 -
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	Well 401 801 C01 D01	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE	Cycle (Gr Auto Interpretation High-risk HPV High-risk HPV High-risk HPV	Remark 18.39 51.39 39.52 66.39.52	IC •	ar 670 C(t) 25,67 25,92 25,92 22,42	66 - -	Cycle (C(t) N/A N/A 24,98	Graph 2 45 - -	Positive AM C(t) N/A N/A N/A N/A	Find	C(t) N/A N/A N/A N/A	51 - - -	Cyr theck C(t) N/A N/A	(Gra	Ph 3) Vertical C HEX C(t) N/A N/A N/A) Horizo
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	Well A01 B01 C01 D01 E01	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	Cycle (Gr Auto Interpretation High-risk HPV High-risk HPV High-risk HPV	Remark 16.39 51.39 39.52 66.39.52 51.56	IC •	ar 670 C(t) 22,52 25,92 22,42 25,64	66 - - -	Cycle (C(t) N/A N/A 24,98 N/A	Graph 2 45 - - -	Positive AM C(t) N/A N/A N/A N/A	Find	C(t) N/A N/A N/A N/A N/A	51 • • •	Cyr Check () C(t) N/A 31.67 N/A N/A 18,81	(Gra (Gra 59 - - - - -	/ertical () HEX C(t) N/A N/A N/A N/A N/A) Horizo
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	Well 401 801 C01 D01	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE	Cycle (Gr Auto Interpretation High-risk HPV High-risk HPV High-risk HPV High-risk HPV	Remark 18.39 51.39 39.52 66.39.52	IC •	ar 670 C(t) 22,52 25,92 22,42 25,64 23,08	66 - -	Cycle (C(t) N/A N/A 24,98 N/A N/A	Graph 2 45 - -	Positive AM C(t) N/A N/A N/A N/A N/A	Find	C(t) N/A N/A N/A N/A N/A	51 - - -	Cyr check C(t) N/A 31.67 N/A 18.81 N/A	(Gra	/ertical () HEX C(t) N/A N/A N/A N/A N/A N/A) Horizo
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	well A01 B01 C01 D01 E01 F01	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	Cycle (Gr Auto Interpretation High-risk HRV High-risk HRV High-risk HRV High-risk HRV High-risk HRV	Remark 16, 39 51, 39 30, 52 66, 39, 52 65, 35, 56 18	IC •	ar 670 C(t) 22,52 25,92 22,42 25,64	66 - - - -	Cycle (C(t) N/A N/A 24,98 N/A	Graph 2 45 - - - -	Positive AM C(t) N/A N/A N/A N/A	Find	C(t) N/A N/A N/A N/A N/A	51 - - -	Cyr Check () C(t) N/A 31.67 N/A N/A 18,81	(Gra (Gra)))))))))))))	/ertical () HEX C(t) N/A N/A N/A N/A N/A) Horizo
	Negative 🥥 PPLY RESULT Well Info	Positive 🕕	Well Well	Combine	Type SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	Cycle (Gr High-risk HPV High-risk HPV High-risk HPV High-risk HPV High-risk HPV High-risk HPV High-risk HPV	Remark 15.39 33,52 56,39,52 51,56 118 52	IC •	ar 670 C(t) 25,67 22,52 25,92 22,42 25,64 23,08 24,28	66 	Cycle (C(t) N/A N/A N/A 24,98 N/A N/A N/A	Graph 2 45 - - - -	Positive AM C(t) N/A N/A N/A N/A N/A N/A	Find	C(t) N/A N/A N/A N/A N/A N/A N/A	51 - - - -	Cyr check C(t) 31.67 N/A 31.81 N/A 18.81 N/A N/A	ecle (Gra	Pertical C HEX C(t) N/A N/A N/A N/A N/A N/A N/A	16

Fig. 15. Test result on Seegene Viewer

4) Validation Criteria of Control Results

a. Valid Assay Run

To check the validation of experiments, the PCR runs should be accompanied with PC (Positive Control) and NC (Negative Control). Assay run is determined as valid when all of the following criteria are met:

								Seegen	e Viewe	r Result						
Control		FAM (Ct))		HEX (Ct)		Cal	Red 610	(Ct)	Qua	asar 670	(Ct)	Qua	sar 705	(Ct)	Auto
	66	45	58	51	59	16	33	39	52	IC	35	18	56	68	31	Interpretation
Positive	15≤Qt≤31	_	_	15≤Qt≤31	_	_	Positive									
Control 1	1020201			10_01_01			10-0-01			10204201			1020201			Control(+)
Positive	_	15≤Qt≤31	_	_	15≤Qt≤31	_	Positive									
Control 2		10-0-01			10-01-01			10-0-01			1020201			102 01201		Control(+)
Positive	-	_	15≤Qt≤31	-	-	15≤Qt≤31	-	_	15≤Qt≤31	_	_	15≤Qt≤31	_	_	15≤Qt≤31	Positive
Control 3			1020201			1020201			1020201			1020201			1020201	Control(+)
Negative	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Negative
Control																Control(-)

b. Invalid Assay Run

In case of a validation failure, the results should not be interpreted or reported, and the PCR reaction must be repeated.

RESULTS

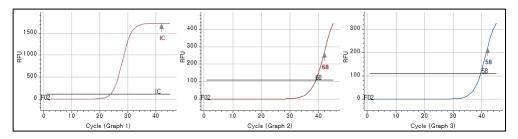
1. Analyte Information

Eluerenheree	Analytes								
Fluorophores	Graph 1	Graph 2	Graph 3						
FAM	HPV66	HPV45	HPV58						
HEX	HPV51	HPV59	HPV16						
Cal Red 610	HPV33	HPV39	HPV52						
Quasar 670	IC	HPV35	HPV18						
Quasar 705	HPV56	HPV68	HPV31						

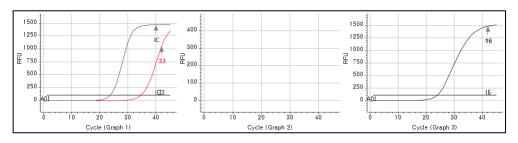
2. Interpretation of Results

Analytes	C _t value	Result
Torgoto	≤ 43	Detected (+)
Targets	> 43 or N/A	Not detected (-)
IC	≤ 43	Detected (+)
	> 43 or N/A	Not detected (-)

Target Result*	IC Result*	Overall Interpretation
+	+	Target Nucleic acid, detected
		- Target HPV type identification
		Target Nucleic acid, detected ^{**}
+	_	- Target HPV type identification
		- Additional HPV genotypes which may be present were not
		detected.
-	+	Target Nucleic acid, not detected
		Invalid
		- Negative IC signal suggests inadequate specimen
-	-	collection, processing or the presence of inhibitors.
		- Repeat the test from the step of nucleic acid extraction
		using another aliquot of the original specimen.


* Internal Control or any other signals are not observed: see TROUBLESHOOTINGS.

** Internal Control signal could be reduced or absent due to high titer of pathogens.



3. Application to Clinical Samples

Clinical Sample 1

Clinical Sample 2

	Seegene Viewer Result (Ct)																
Sample	Auto Interpretation	Remark	Quasar 670		FAM			нех		Ca	I Red 6	10	Qua 67		Qı	uasar 7	05
	Link rick LD) (50.00	IC	66	45	58	51	59	16	33	39	52	35	18	56	68	31
1	High-risk HPV	58,68	23.7	N/A	N/A	39.58	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	39.05	N/A
2	Lligh rick LID)/	16.00	IC	66	45	58	51	59	16	33	39	52	35	18	56	68	31
2	High-risk HPV	16,33	23.79	N/A	N/A	N/A	N/A	N/A	24.04	34.78	N/A	N/A	N/A	N/A	N/A	N/A	N⁄A

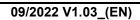
TROUBLESHOOTINGS

Allplex™ HPV HR Detection									
OBSERVATION	PROBABLE CAUSES	SOLUTION							
	The fluorophores for data analysis do not comply with the protocol	Select the correct fluorophores for data analysis.							
No signal	Incorrect setting of real- time thermal cycler	Please check the thermal cycling conditions and repeat the test under the correct settings.							
	Incorrect storage or expiration of the test kit	Please check the storage conditions (See page 10) and the expiration date (refer to label) of the test kit and use a new kit if necessary.							
	High load of pathogen's nucleic acid	If target pathogen signal is observed but not IC, then IC amplification may have been inhibited by high titer of target pathogen. If you want to observe IC signal, dilute the specimen (1/3~1/10) in saline buffer and repeat the test from extraction step.							
No Internal Control signal	Presence of PCR Inhibitor	Please dilute the extracted nucleic acid (1/2~1/5) in RNase-free water and repeat the test from PCR step. If the same result is shown, dilute the specimen (1/3~1/10) in saline buffer and repeat the test from extraction step.							
	Incorrect specimen collection	If both target and IC signal were not observed that means specimen collected inappropriately. Recollect the specimen.							
Putative false positive or target signal(s) observed in Negative Control	Contamination	Decontaminate all surfaces and instruments with sodium hypochlorite and ethanol. Only use filter tips throughout the procedure and change tips between tubes. Repeat the entire procedure from nucleic acid extraction with the new set of reagents.							

	Allplex™ HPV HR	Detection
OBSERVATION	PROBABLE CAUSES	SOLUTION
	Cross-contamination between PC1, 2 and 3	Restart from extraction step or restart from Real-time PCR step.
	Error in specimen collection	Please check the specimen collection method and re-collect the specimen.
	Incorrect storage of the specimen	Please re-collect the specimen and repeat the entire procedure. Ensure that the specimen is stored as recommended.
	Error in nucleic acid extraction	Please check the nucleic acid extraction procedure as well as nucleic acid concentration, and re-extract the nucleic acid.
Putative False negative or no signal observed in	Error in adding nucleic acid to correct PCR tubes	Check the sample numbers of tubes containing nucleic acid and make sure to add nucleic acid into the correct PCR tubes and carefully repeat the test if necessary.
Positive Control	Presence of inhibitor	Please dilute the specimen (1/3~1/10) in saline buffer and repeat the test from extraction step.
	The fluorophores for data analysis do not comply with the protocol	Select the correct fluorophores for data analysis.
	Incorrect programming	Repeat the PCR with corrected setting.
	Incorrect PCR mixture	Confirm that all components are added to the reaction mixture. Sensitivity is compromised with pre-composed premix. All reagents must be homogenized and spin down before use.
	Leaving reagents at room temperature for a long time or incorrect storage condition	Please check the storage condition and the expiry date (see the kit label) of the reagents and use a new kit if necessary.
Spikes in any cycles of amplification curve	Bubble in the PCR tube	Spin down the PCR tube before run.

PERFORMANCE

1. Analytical Specificity


The high specificity of Allplex[™] HPV HR Detection is ensured by the oligos designed specifically for the targets of interest. Allplex[™] HPV HR Detection was tested for cross-reactivity to 105 different pathogens, and PCR amplification and detection were only identified for the specified targets.

No.	Organism	Source	Isolate No.	Result [†]
1	Acinetobacter baumannii	ZMC	0801597	Not detected
2	Acinetobacter Iwoffii	ZMC	0801909	Not detected
3	Adenovirus Type 1	ZMC	0810050CF	Not detected
4	Adenovirus type 18	KBPV	KBPV-VR-4D	Not detected
5	Adenovirus type 23	KBPV	KBPV-VR-5D	Not detected
6	Adenovirus Type 40	ZMC	0810084CF	Not detected
7	Bacteroides fragilis	ZMC	0801583	Not detected
8	Bifidobacterium longum	ZMC	0804047	Not detected
9	Candida albicans	ZMC	0801504	Not detected
10	Chlamydia trachomatis	ZMC	0801775	Not detected
11	Clostridium perfringens Type A	ZMC	0801585	Not detected
12	Corynebacterium genitalium	ZMC	0804108	Not detected
13	Cytomegalovirus (CMV) (Strain: AD-169)	ZMC	0810003CF	Not detected
14	Enterobacter cloacae	ZMC	0801597	Not detected
15	Enterococcus faecalis	ZMC	0801637	Not detected
16	Escherichia coli	ZMC	0801517	Not detected
17	Fusobacterium nucleatum	ZMC	0801911	Not detected
18	Gardnerella vaginalis	ZMC	0801894	Not detected
19	Haemophilus ducreyi	ZMC	0801736	Not detected
20	Herpes Simplex Virus Type 1 (HSV-1) (Strain: MacIntyre)	ZMC	0810005CF	Not detected
21	Herpes Simplex Virus Type 2 (HSV-2) (Strain: MS)	ZMC	0810006CF	Not detected
22	Human Hepatitis B Virus (HBV)	ZMC	NATHBV-0006	Not detected
23	Human immunodeficiency virus (HIV-1)	ATCC	VR-3245SD	Not detected
24	Klebsiella pneumoniae	ZMC	0801506	Not detected
25	Lactobacillus acidophilus	ZMC	0801540	Not detected

Allplex[™] HPV HR Detection

No.	Organism	Source	Isolate No.	Result [†]
26	Lactobacillus crispatus	ZMC	0804143	Not detected
27	Lactobacillus gasseri	ZMC	0804327	Not detected
28	Lactobacillus iners	ZMC	0804261	Not detected
29	Lactobacillus jensenii	ZMC	0804260	Not detected
30	Mobiluncus curtisii	ZMC	0804141	Not detected
31	Mobiluncus mulieris	ZMC	0804116	Not detected
32	Mycoplasma hominis	ZMC	0804011	Not detected
33	Neisseria gonorrhoeae	ZMC	0801482	Not detected
34	Neisseria lactamica	ZMC	0801752	Not detected
35	Neisseria meningitidis Serogroup A	ZMC	0801511	Not detected
36	Neisseria sicca	ZMC	0801754	Not detected
37	Peptostreptococcus anaerobius	ZMC	0804012	Not detected
38	Prevotella melaninogenica	ZMC	0804292	Not detected
39	Proteus mirabilis	ZMC	0804544	Not detected
40	Pseudomonas aeruginosa	ZMC	0801519	Not detected
41	Pseudomonas fluorescens	ZMC	0804248	Not detected
42	Serratia marcescens	ZMC	0801723	Not detected
43	Simian Virus 40 (SV40)	ATCC	VRMC-2	Not detected
44	Methicillin-resistant Staphylococcus aureus (MRSA)	ZMC	0801638	Not detected
45	Methicillin-resistant Staphylococcus epidermidis (MRSE)	ZMC	0801651	Not detected
46	Streptococcus agalactiae	ZMC	0801545	Not detected
47	Streptococcus mitis	ZMC	0801695	Not detected
48	Streptococcus pyogenes	ZMC	0801512	Not detected
49	Syphilis (<i>Treponema pallidum</i>)	ZMC	KZMC002	Not detected
50	Trichomonas vaginalis	ZMC	0801805	Not detected
51	Ureaplasma urealyticum	NCTC	10177	Not detected
52	HPV1	Clone	d DNA	Not detected
53	HPV2	Cloned DNA		Not detected
54	HPV3	Korean isolate		Not detected
55	HPV4	Cloned DNA		Not detected
56	HPV5	Cloned DNA		Not detected
57	HPV8	Cloned DNA		Not detected
58	HPV10	Korean	isolate	Not detected

Allplex[™] HPV HR Detection

No.	Organism	Source	Isolate No.	Result [†]
59	HPV13	Cloned DNA		Not detected
60	HPV27	Korean	isolate	Not detected
61	HPV30	Cloned	I DNA	Not detected
62	HPV32	Korean	isolate	Not detected
63	HPV34	Korean	isolate	Not detected
64	HPV55	Korean	isolate	Not detected
65	HPV57	Korean	isolate	Not detected
66	HPV62	Korean	isolate	Not detected
67	HPV67	Korean	isolate	Not detected
68	HPV71	Korean	isolate	Not detected
69	HPV72	Korean	isolate	Not detected
70	HPV74	Korean	isolate	Not detected
71	HPV81	Korean	isolate	Not detected
72	HPV83	Cloned	DNA	Not detected
73	HPV84	Korean	isolate	Not detected
74	HPV85	Cloned	DNA	Not detected
75	HPV102	Cloned DNA		Not detected
76	SiHa (HPV16 positive)	KCLB	30035	HPV16 detected
77	HeLa (HPV18 positive)	KCLB	10002	HPV18 detected
78	HPV16	NIBSC	06/202	HPV16 detected
79	HPV18	NIBSC	06/206	HPV18 detected
80	HPV31	NIBSC	14/258	HPV31 detected
81	HPV33	NIBSC	14/260	HPV33 detected
82	HPV35	Korean	isolate	HPV35 detected
83	HPV39	Korean	isolate	HPV39 detected
84	HPV45	NIBSC	14/104	HPV45 detected
85	HPV51	Korean	isolate	HPV51 detected
86	HPV52	NIBSC	14/262	HPV52 detected
87	HPV56	Korean isolate		HPV56 detected
88	HPV58	NIBSC 14/264		HPV58 detected
89	HPV59	Korean	isolate	HPV59 detected
90	HPV66	Korean isolate		HPV66 detected
91	HPV68	Korean isolate		HPV68 detected
92	HPV6	NIBSC	14/256	Not detected

Seegene

No.	Organism	Source	Isolate No.	Result [†]		
93	HPV11	NIBSC	14/100	Not detected		
94	HPV26	Korean	isolate	Not detected		
95	HPV40	Korean	isolate	Not detected		
96	HPV42	Korean	isolate	Not detected		
97	HPV43	Korean	isolate	Not detected		
98	HPV44	Korean isolate		Korean isolate Not detected		Not detected
99	HPV53	Korean	isolate	Not detected		
100	HPV54	Korean	isolate	Not detected		
101	HPV61	Korean	isolate	Not detected		
102	HPV69	Korean	isolate	Not detected		
103	HPV70	Korean	isolate	Not detected		
104	HPV73	Korean	Not detected			
105	HPV82	Korean	Not detected			

[†] Specificity tests were repeated 3 times.

 ATCC: American Type Culture Collection KBPV: Korea Bank for Pathogenic Viruses
 ZMC: ZeptoMetrix Corporation NCTC: National Collection of Type Culture
 NIBSC: National Institute for Biological Standards and Control

2. Analytical Sensitivity

In order to determine the limit of detection (LoD) of Allplex[™] HPV HR Detection, pDNA for traget 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68 and 2 types of cell lines for target 16 and 18 were serially diluted into pooled HPV negative cervical specimens collected in ThinPrep solution. Nucleic acids were extracted using Microlab NIMBUS IVD (STARMag 96 X 4 Universal Cartridge Kit). The LoD for each target was estimated by probit analysis using software (MedCalc V20.015).

2-1. Limit of Detection: HPV Cell Lines

Target	Limit of Detection (cells/mL)		
SiHa (HPV16)	88.9		
HeLa (HPV18)	45.2		

2-2. Limit of Detection: HPV pDNA

Target	Limit of Detection (copies/mL)
HPV35	3556
HPV39	2515
HPV51	3142
HPV56	3623
HPV59	3660
HPV66	3941
HPV68	3586

Target	Limit of Detection (IU/mL)
HPV16	4134
HPV18	1217
HPV31	3680
HPV33	1616
HPV45	5643
HPV52	2967
HPV58	2263

3. Reproducibility

The reproducibility test was prepared including Moderate positive (3X LoD) and Low positive (1X LoD) samples. At each testing site, the kit was tested for 5 days, 2 runs per day by 2 different experimenters and triplicate of each target. The positive rates were observed for each target for reproducibility study: 100.0% for Moderate positive samples, \geq 95% for Low positive samples. The reproducibility of AllplexTM HPV HR Detection was evaluated between runs, sites and product lots. Positive rates for all concentrations met criteria, and CV values were less than 10 (<10).

The results were satisfied with the criteria set above, thus confirming the reproducible performances of Allplex[™] HPV HR Detection.

4. Interfering substances

There were no effects on the results by adding the substance: non-specific detections or inhibitions on target amplification. Based on the results, 7 different types of interfering substances had no effect on Allplex[™] HPV HR Detection results.

No.	Interfering Substances	Source	Test Concentration
1	Blood	Human	5% v/v
2	Leukocytes, Sonicated	Lee Biosolutions (Cat.No. 342-10-1)	1X10 ⁶ cells/mL
3	Mucin (Mucin from porcine stomach)	Sigma-Aldrich (Cat.No. M1778-10G)	10% v/v
4	Spermicide (Nonoxynol-9)	Abcam (Cat.No. ab143673)	10% w/v
5	Yeast Gard Advanced®	Lake Consumer Products, Inc.	10% w/v
6	Lubricant	Vagisil [®]	10% w/v
7	Contraceptive pill (Mercilon®)	Alvogen [®]	10% w/v

5. Clinical performance

[Performance comparison to a CE-IVDD approval comparator]

Allplex[™] HPV HR Detection showed an equivalent clinical performance as a primary cervical cancer screening test in comparison to the reference assay in risk stratification for CIN 2+, based on the central pathology review diagnoses of cervical cancer. As per the diagnosis of cervical intraepithelial neoplasms (CIN), relative sensitivity and relative specificity between the test assay and comparator HPV DNA testing should be above 90% and 98%, respectively, which are set based on the equivalency criteria (Arbyn et al., 2015). Allplex[™] HPV HR Detection met the designated criteria and showed its clinical validity.

			Histology	
		CIN2+	<cin2< th=""><th>Total</th></cin2<>	Total
	Positive	314	276	590
Allplex™ HPV HR	Negative	99	127	226
Detection	Total	413	403	816

			Histology	
		CIN2+	<cin2< th=""><th>Total</th></cin2<>	Total
	Positive	318	274	592
CE-IVDD approval	Negative	95	129	224
comparator	Total	413	403	816

Relative sensitivity (Allplex™ vs Comparator)	98.74%
Relative specificity (Allplex™ vs Comparator)	98.45%

[Clinical equivalence of Allplex[™] HPV HR Detection between cervical and self-collected vaginal specimens]

Allplex[™] HPV HR Detection showed an equivalent clinical validity in self-collected vaginal specimens. The paired specimens of 143 cervical specimens and 143 self-collected vaginal specimens were included in the clinical performance. Allplex[™] HPV HR Detection showed an overall percent agreement (OPA) of above 95% and the agreement was equivalent between the paired cervical specimens and self-collected vaginal specimens, suggesting the equivalent clinical performance between the paired specimens.

	Cervical specimens				Self- collected vaginal specimens			
	(Allplex™ H	PV HR vs CE-IV	/DD approved	comparator)	(Allplex™ HPV HR vs CE-IVDD approved comparator)			
	OPA (%)	95% CI	Карра	95% CI	OPA (%)	95% CI	Карра	95% CI
HPV16	98.60 (141/143)	95.04 to 99.83	0.868	0.687 to 1.000	97.90 (140/143)	93.99 to 99.57	0.812	0.605 to 1.000
HPV18	100 (143/143)	97.45 to 100.00	1.000	1.000 to 1.000	100 (143/143)	97.45 to 100.00	1.000	1.000 to 1.000
HPV16 or HPV18	99.30 (142/143)	96.17 to 99.83	0.937	0.816 to 1.000	98.60 (141/143)	95.04 to 99.83	0.881	0.719 to 1.000
Other HPV	95.10 (136/143)	90.17 to 98.01	0.876	0.786 to 0.965	95.10 (136/143)	90.17 to 98.01	0.876	0.787 to 0.965
HR-HPV Positive	96.50 (138/143)	92.03 to 98.86	0.916	0.845 to 0.988	95.80 (137/143)	91.09 to 98.44	0.889	0.820 to 0.978

REFERENCES

- 1. Burd EM. [Human papillomavirus and cervical cancer.] Clin Microbiol Rev. (2003) 16(1): 1-17
- Castle PE. [The potential utility of HPV genotyping in screening and clinical management.] J Natl Compr Canc Netw. (2008) 6(1): 83-95
- 3. Chris JM, Peter JS, Philip EC. [Clinical utility of HPV genotyping.] Gynecol Oncol. (2006) 103: 12-17
- 4. Chun JY, Kim KJ, Hwang IT, Kim YJ, Lee DH, Lee IK, Kim JK. [Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene.] Nucleic Acids Res. (2007) 35(6): e40
- 5. Chun JY. [High Multiplex Molecular Diagnostics.] Seegene Bulletin (2012) 1: 1-4
- Giorgi Rossi P, Bisanzi S, Paganini I, Di Iasi A, Angeloni C, Scalisi A, Macis R, Pini MT, Chini F, Carozzi FM. [HPV Prevalence Italian Working Group Prevalence of HPV high and low risk types in cervical samples from the Italian general population: a population based study.] BMC Infect Dis. (2010) 20(10): 214
- 7. Hwang IT. [Cyclic-CMTA: An Innovative Concept in Multiplex Quantification.] Seegene Bulletin (2012) 1: 11-15
- 8. Krane JF, Granter SR, Trask CE, Hogan CL, Lee KR. [Papanicolaou smear sensitivity for the detection of adenocarcinoma of the cervix: a study of 49 cases.] Cancer. (2001) 93(1): 8-15
- 9. Lee DH. [TOCE: Innovative Technology for High Multiplex Real-time PCR.] Seegene Bulletin (2012) 1: 5-10
- 10. Li J, Mei J, Wang X, Hu L, Lin Y, Yang P. [Human papillomavirus type-specific prevalence in women with cervical intraepithelial neoplasm in Western China.] J Clin Microbiol. (2012) 50(3): 1079-1081
- Novaes LC, Novaes MR, Simes-Barbosa A. [Diagnosis of human papillomatosis by polymerase chain reaction in cases of divergence between results of hybrid capture and papanicolaou cytology.] Braz J infect Dis. (2006) 10(3):169-172
- 12. Son S, Noh HT, An S. [Human papillomavirus status in cervical scrapes and biopsy specimens using the HPV genotyping DNA microarray.] Int J Gynaecol Obstet. (2006) 93(3): 258-259
- Sun ZR, Ji YH, Zhou WQ, Zhang SL, Jiang WG, Ruan Q. [Characteristics of HPV prevalence among women in Liaoning province, China.] Int J Gynaecol Obstet. (2010) 109(2): 105-109
- Wallace J, Woda BA, Pihan G. [Facile, Comprehensive High-Throughput Genotyping of Human Genital Papillomaviruses Using Spectrally Addressable Liquid Bead Microarrays.] J Mol Diagn. (2005) 7(1): 72-80
- 15. Ursu RG, Onofriescu M, Nemescu D, Iancu LS. [HPV prevalence and type distribution in women with or without cervical lesions in the Northeast region of Romania.] Virol J. (2011) 22(8): 558
- 16. Arbyn M, Snijders PJF, Meijer CJLM, Berkhof J, Cuschieri K, Kocjan BJ, Poljak M. [Which high-risk HPV assays fulfil criteria for use in primary cervical cancer screening?] Clin Microbiol Infect. (2015) 21(9):817-826.

KEY TO SYMBOLS

Key to symbols used in the manual and labels.

Symbol	Explanation
IVD	In vitro diagnostic medical device
LOT	Batch code
REF	Catalogue number
	Use-by date
X	Upper limit of temperature
PRIMER	Oligonucleotide mix for amplification and detection
ENZYME	Enzyme mix
BUFFER	Buffer
WATER	RNase-free Water
CONTROL +	Positive Control (PC)
I	Consult instructions for use
	Manufacturer
	Date of manufacture
EC REP	Authorized representative in the European Community
\land	Caution
Σ	Contains sufficient for <n> tests</n>
UDI	Unique Device Identifier
rxns	Reaction barcode for automated extraction system

ORDERING INFORMATION

Product	Size
5	
Allplex™ HPV HR Detection	25 rxns
Allplex™ HPV HR Detection	100 rxns
Allplex™ HPV HR Detection	100 rxns x 8 kits
Allplex™ HPV28 Detection	25 rxns
Allplex™ HPV28 Detection	100 rxns
	Allplex [™] HPV HR Detection Allplex [™] HPV HR Detection Allplex [™] HPV HR Detection Allplex [™] HPV28 Detection

•		
65415-02	Microlab NIMBUS IVD	EA
173000-075	Microlab STARlet IVD	EA
65415-03	Seegene NIMBUS	EA
67930-03	Seegene STARlet	EA
SG71101	Seegene STARIet 96MPH	EA
SG72100	AIOS	EA
744300.4.UC384	STARMag 96 X 4 Universal Cartridge Kit	384T / 1box
EX00036P	STARMag™ S96H N Kit	480T / 1box
EX00037P		960T / 1box
SG71100	SEEPREP32	EA
EX00009P	STARMag 96 ProPrep (Plate Type)	96T / 1box
EX00009T	STARMag 96 ProPrep (Tube Type)	96T / 1box