Allplex[™] **Vaginitis Screening Assay**

(Cat. No. SD9750X, SD10321Z)

A multiplex real-time PCR assay for the detection of Lactobacillus spp., Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Candida albicans, Candida others and Trichomonas vaginalis from genital swab and liquid based cytology specimens.

For use with

- 1. CFX96[™] Real-time PCR Detection System (CFX96 Manager[™] Software-IVD v1.6)
- 2. CFX96[™] Dx System (CFX96 Manager[™] Dx Software v3.1)

CE

IVD For in vitro diagnostic use only

Seegene Inc.

Taewon Bldg., 91 Ogeum-ro, Songpa-gu, Seoul, Republic of Korea 05548

Medical Technology Promedt Consulting GmbH Altenhofstrasse 80, D-66386 St.Ingbert, Germany

Not available in the U.S.

TABLE OF CONTENTS

NOTICES	3
INTENDED USE	5
PRINCIPLES AND PROCEDURE OVERVIEW	5
BACKGROUND INFORMATION	7
REAGENTS	8
STORAGE AND HANDLING	10
MATERIALS REQUIRED BUT NOT PROVIDED	10
PROTOCOL	11
REAL-TIME PCR INSTRUMENT SET UP AND RESULTS ANALYSIS	18
RESULTS	42
TROUBLESHOOTINGS	47
PERFORMANCE	49
REFERENCES	56
KEY TO SYMBOLS	57
ORDERING INFORMATION	58

NOTICES

- For *in vitro* diagnostic use only.
- Reliability of the results depends on adequate specimen collection, storage, transport and processing procedure.
- If this product is used with Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS and Seegene STARlet, it provides maximum 5 separate runs.
- AIOS combines Seegene STARlet sold by Seegene with real-time PCR equipment (CFX96 Dx, Manufacturer: Bio-Rad) and plate sealer (Manufacturer: SAMICK THK) to form an automated linkage structure of nucleic acid extraction to PCR.
- This test has been validated for the following specimen types: Genital swab and Liquid based cytology. This test has not been validated for any other types of specimens.
- Store DNA samples at \leq -20 °C until use and keep samples on ice during use.
- Sensitivity of the assay may decrease if samples are repeatedly frozen/thawed or stored for a longer period of time.
- Workflow in the laboratory should proceed in a unidirectional manner.
- Wear disposable gloves and change them before entering different areas. Change gloves immediately if contaminated or treat them with DNA decontaminating reagent.
- Supplies and equipment must be dedicated to working areas and should not be moved from one area to another.
- Do not pipette by mouth.
- Do not eat, drink or smoke in laboratory work areas. Wear disposable powder-free gloves, laboratory coats and eye protections when handling specimens and reagents. Wash hands thoroughly after handling specimens and test reagents.
- Avoid contamination of reagents when removing aliquots from reagent tubes. Use of sterilized aerosol resistant disposable pipette tips is recommended.
- Do not pool reagents from different lots or from different tubes of the same lot.
- Do not use the product after its expiry date.
- Do not reuse all disposable items.
- Use screw-capped tubes and prevent any potential splashing or cross-contamination of specimens during preparation.
- Please be careful not to contaminate reagents with extracted nucleic acids, PCR products, and positive control. To prevent contamination of reagents, use of filter-tips is recommended.

- Use separated and segregated working areas for each experiment.
- To avoid contamination of working areas with amplified products, open PCR reaction tubes or strips only at designated working areas after amplification.
- Store positive materials separated from the kit's reagents.
- Laboratory safety procedures (refer to Biosafety in Microbiological and Biomedical Laboratories & CLSI Documents) must be taken when handling specimens. Thoroughly clean and disinfect all work surfaces with 0.5% sodium hypochlorite (in de-ionized or distilled water). Product components (product residuals, packaging) can be considered as laboratory waste. Dispose of unused reagents and waste in accordance with applicable federal, state, and local regulations.
- Expiry date is 12 months from the date of manufacture at ≤ -20℃. Please refer to label for final expiry date.
- Seegene NIMBUS and Seegene STARlet are the same equipment as the Microlab NIMBUS IVD and Microlab STARlet IVD, although the manufacturer is different. Since there are no hardware changes on the device, the test results are the same.
- The brand name of "CFX96[™] Real-time PCR Detection System-IVD" is changed to "CFX96[™] Dx System". Since there are no hardware changes to the systems, it is expected to obtain the same results from both systems.
- "CFX Manager[™] Dx Software v3.1" is an upgrade version of "CFX Manager[™] Software-IVD v1.6". The upgraded software includes enhancements to the "Run" menu. These enhancements do not impact the results of data analysis; therefore, results will be the same.

INTENDED USE

Allplex[™] Vaginitis Screening Assay is a qualitative and quantitative *in vitro* test for the single or multiple pathogen detection of *Lactobacillus* spp. (Lacto; *Lactobacillus crispatus, Lactobacillus gasseri* and *Lactobacillus jensenii*), *Gardnerella vaginalis* (GV), *Atopobium vaginae* (AV), *Mobiluncus* spp.(Mob; *Mobiluncus mulieris* and *Mobiluncus curtisii*), *Candida albicans* (CA), *Candida* others (CO; *Candida krusei, Candida glabrata, Candida dubliniensis, Candida parapsilosis, Candida tropicalis* and *Candida lusitaniae*) and *Trichomonas vaginalis* (TV).

- Quantitative detection of *Lactobacillus* spp. (Lacto), *Gardnerella vaginalis* (GV) and *Atopobium vaginae* (AV)

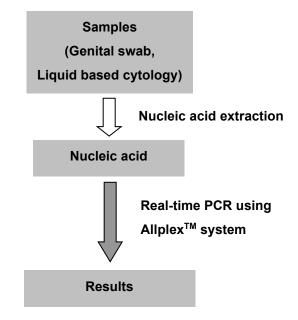
- Qualitative detection of *Mobiluncus* spp. (Mob), *Candida albicans* (CA), *Candida* others (CO) and *Trichomonas vaginalis* (TV)

Allplex[™] Vaginitis Screening Assay is intended to aid the diagnosis of vaginal infection in women with a clinical symptom consistent with bacterial vaginosis. Allplex[™] Vaginitis Screening Assay should be interpreted in conjunction with other laboratory clinical data from the physicians.

PRINCIPLES AND PROCEDURE OVERVIEW

1. Principles

Allplex[™] Vaginitis Screening Assay exhibits Seegene's proprietary MuDT[™] technology, which allows to provide multi-Ct (threshold cycle) values in a single fluorescence channel without melt curve analysis on real-time PCR instruments.


Allplex[™] Vaginitis Screening Assay is a multiplex real-time PCR assay that permits simultaneous amplification and detection of target nucleic acids of *Lactobacillus* spp. (Lacto), *Gardnerella vaginalis* (GV), *Atopobium vaginae* (AV), *Mobiluncus* spp. (Mob), *Candida albicans* (CA), Candida others (CO), *Trichomonas vaginalis* (TV) and Internal Control. The presence of specific gene sequence in the reaction is reported as a Ct value and Qt value through Seegene Viewer analysis software.

An endogenous human gene is used as Internal Control (IC) to monitor the whole process of sample collection, nucleic acid extraction and to check for any possible PCR inhibition.

To prevent amplification product acting as potential contaminants, Uracil-DNA glycosylase (UDG)-dUTP system is employed in Allplex[™] Vaginitis Screening Assay. The UDG-dUTP system is commonly used when performing PCR to eliminate amplicon carry-over using UDG excises uracil residues from DNA by cleaving the N-glycosylic bond.

2. Procedure Overview

BACKGROUND INFORMATION

Most women will have a vaginal infection, characterized by discharge, itching, or odor, during their lifetime. Obtaining a medical history alone has been shown to be insufficient for accurate diagnosis of vaginitis and can lead to the inappropriate administration of medication. Therefore, a careful history, examination, and laboratory testing to determine the etiology of vaginal symptoms are warranted. The three most common conditions diagnosed among women with vaginal symptoms presenting in the primary care setting were bacterial vaginosis (22% to 50%), vulvovaginal candidiasis (17% to 39%), and trichomoniasis (4% to 35%). In some cases, the etiology may be mixed, and there may be more than one disease present; in approximately 30% of symptomatic women, no etiologic agent is identified.

Bacterial vaginosis (BV) is a polymicrobial clinical syndrome resulting from replacement of the normal hydrogen peroxide producing *Lactobacillus* sp. in the vagina with high concentrations of anaerobic bacteria (e.g. *Prevotella* sp. and *Mobiluncus* sp.), *G. vaginalis*, Ureaplasma, Mycoplasma, and numerous fastidious or uncultivated anaerobes. BV can be diagnosed by the use of clinical criteria (i.e., Amsel's Diagnostic Criteria) or Gram stain (considered the gold standard laboratory method for diagnosing BV). PCR has been used in research settings for the detection of variety of organisms associated with BV. Detection of specific organisms might be predictive of BV by PCR. Additional validation is needed before these tests can be recommended to diagnose BV.

Vulvovaginal candidiasis (VVC) is caused by *C. albicans* but can occasionally be caused by other *Candida* sp. or yeast. An estimated 75% of women will have at least one episode of VVC, and 40% to 45% will have two or more episodes. On the basis of clinical presentation, microbiology, host factors, and response to therapy, VVC can be classified as either uncomplicated or complicated. Approximately 10% to 20% of women will have complicated VVC, requiring special diagnostic and therapeutic considerations. Conventional antimycotic therapies are not as effective against these nonalbicans species as against *C. albicans*.

Trichomoniasis is a very common sexually transmitted disease (STD). It is caused by infection with a protozoan parasite called *Trichomonas vaginalis*. About 70% of infected people do not have any signs or symptoms. Wet-mount microscopy of a vaginal swab often reveals white blood cells and rapidly motile trichomonads. However, detection of trichomonads by microscopy has a sensitivity of only 60% to 75%, whereas polymerase chain reaction (PCR) can detect *T. vaginalis* with a sensitivity of 85% to 100%.

REAGENTS

The reagents contained in one kit are sufficient for 100 reactions.

Order information (**REF** SD9750X)

Allplex [™] Vaginitis Screening Assay			
Symbol	Contents	Volume	Description
PRIMER	VS MOM	500 μL	MuDT Oligo Mix (MOM): - Amplification and detection reagent
PREMIX	EM1	500 µL	- DNA polymerase - Uracil-DNA glycosylase (UDG) - Buffer containing dNTPs
CONTROL +	VS PC	80 µL	Positive Control (PC): - Mixture of pathogen and IC clones
SD	VS SD1	80 µL	Standard DNA for Quantitation (1X10 ⁷ copies/rxn) - Mixture of 3 pathogen clones (Lacto, GV, AV)
SD	VS SD2	80 µL	Standard DNA for Quantitation (1X10 ⁵ copies/rxn) - Mixture of 3 pathogen clones (Lacto, GV, AV)
SD	VS SD3	80 µL	Standard DNA for Quantitation (1X10 ³ copies/rxn) - Mixture of 3 pathogen clones (Lacto, GV, AV)
WATER	RNase-free Water	1,000 µL	Ultrapure quality, PCR-grade
		Use	er manual

Accessory product – analysis software

Seegene Viewer*

* The analysis software is provided by Seegene or regional manager. Please use Seegene Viewer beyond V3.

The reagents contained in one kit are sufficient for 25 reactions. Order information ($\boxed{\text{REF}}$ SD10321Z)

Allplex [™] Vaginitis Screening Assay			
Symbol	Contents	Volume	Description
PRIMER	VS MOM	125 µL	MuDT Oligo Mix (MOM): - Amplification and detection reagent
PREMIX	EM1	125 µL	- DNA polymerase - Uracil-DNA glycosylase (UDG) - Buffer containing dNTPs
CONTROL +	VS PC	80 µL	Positive Control (PC): - Mixture of pathogen and IC clones
SD	VS SD1	80 µL	Standard DNA for Quantitation (1X10 ⁷ copies/rxn) - Mixture of 3 pathogen clones (Lacto, GV, AV)
SD	VS SD2	80 µL	Standard DNA for Quantitation (1X10 ⁵ copies/rxn) - Mixture of 3 pathogen clones (Lacto, GV, AV)
SD	VS SD3	80 µL	Standard DNA for Quantitation (1X10 ³ copies/rxn) - Mixture of 3 pathogen clones (Lacto, GV, AV)
WATER	RNase-free Water	1,000 µL	Ultrapure quality, PCR-grade
		Use	er manual

Accessory product – analysis software

Seegene Viewer*

* The analysis software is provided by Seegene or regional manager. Please use Seegene Viewer beyond V3.

STORAGE AND HANDLING

All components of AllplexTM Vaginitis Screening Assay should be stored at \leq -20°C. All components are stable under recommended storage conditions until the expiry date stated on the label. The performance of kit components is not affected for up to 5 freezing and thawing. If the reagents are to be used only intermittently, reagents should be stored in aliquots.

MATERIALS REQUIRED BUT NOT PROVIDED

- Disposable powder free gloves (latex or nitrile)
- Pipettes (adjustable) and sterile pipette tips
- 1.5 mL microcentrifuge tubes
- Ice maker
- Desktop centrifuge
- Vortex mixer
- CFX96[™] Real-time PCR Detection System (Bio-Rad)
- CFX96TM Dx System (Bio-Rad)
- Low-Profile 0.2 mL 8-Tube Strips without Caps (white color, Cat. No. TLS0851, Bio-Rad)
- Optical Flat 8-Cap Strips (Cat No. TCS0803, Bio-Rad)
- Hard-Shell[®] 96-Well PCR Plates, low profile, thin wall, skirted, white/white (Cat. No. HSP9655, Bio-Rad)
- Hard-Shell[®] 96-Well PCR Plates, low profile, thin wall, skirted, white/white, barcoded (Cat. No. HSP9955, Bio-Rad)
- AIOS (Cat. No. SG72100, Seegene)
- Pierceable cap (Cat. No. 922119, SPL) (for AIOS use only)
- Permanent Clear Heat Seal (Cat. No. 1814035, Bio-Rad)*
- PX1 PCR plate sealer (auto-sealer, Cat. No. 181-4000, Bio-Rad)*
- Saline solution
- Clean bench

* Make sure to use the heat seal and the plate sealer listed above together.

PROTOCOL

1. Specimen Collection, Storage, and Transport

Note: All samples should be treated as potentially infectious materials. Only those sample materials are permitted, which are collected, transported and stored attending strictly to the following rules and instructions.

<u>Genital swab</u> Liquid based cytology

Note: To ensure high quality of samples, samples should be transported as fast as possible at indicated temperature.

A. Specimen Collection

Genital swab

For the collection of genital swabs, please use following material:

- Genital swabs can be collected and transported in 1~3 mL of following mediums :
 - ENAT PM 2ML REGULAR APPLICATOR (Copan)
 - UTM with Flocked Swabs (Copan)
 - Swab Specimen Collection Kit (Qiagen Corporation)
- Leave the swab in the transport medium. Close and label the sample container. Strictly adhere to given instructions for storage and transport.
- Please follow a recommended protocol for collection of columnar and squamous epithelium cells after removal of the cervical mucus.

Liquid based cytology

- Use liquid based cytology media ThinPrep[®] from HOLOGIC[®] Inc. and SurePath[™] from BD.
- Follow the manufacturer's instructions for collection of cervical cell specimens into ThinPrep[®] and SurePath[™] media.

B. Specimen Storage & Transport

Specimon	Storage & Transport		Noto	
Specimen	Temp.	Duration*	Note	
Genital swab	2~8 ℃	1 week	- Performance may be affected by prolonged	
ThinPrep [®] medium	2~8 ℃	90 days	storage of specimens Specimens should also adhere to local and national instructions for transport of	
SurePath [™] medium	2~8 ℃	2 weeks	pathogenic material.	

* Duration: The time period from the specimen collection to the final test (includes transport and storage of specimens in prior to test)

2. Nucleic Acid Extraction

A. Pre-treatment of specimens

Genital swab

• Genital swab is used without pre-treatment.

Liquid based cytology

- Equilibrate samples to room temperature $(19 \sim 25 ^{\circ} C)$.
- Centrifuge 1 mL of liquid based cervical cytology for 15 minutes at 15,000 x g (13,000 rpm).
- Discard supernatant and resuspend the pellet in the recommended volume of Saline solution (See Recommended Vol. of 2-B) by vortexing thoroughly to redissolve and disperse the sample.

Note: Process pre-treatment step using lysis buffer in extraction kit not saline solution if the samples are collected in SurePath[™] medium and would be analyzed with Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS or Seegene STARlet.

Note: ThinPrep[®] media can be processed without pre-treatment when using Microlab NIMBUS IVD, Microlab STARIet IVD, Seegene NIMBUS or Seegene STARIet.

• Follow the manufacturer's protocol.

B. Manual Nucleic Acid Extraction Kits

Note: Please use the recommended specimen and elution volumes as indicated below. For others, refer to the manufacturer's manual.

Extraction Kit	Manufacturer	Cat. No.	Recommended Vol.
QIAamp [®] DSP DNA Mini Kit*			Specimen: 200 μL
	QIAGEN	61304	Elution: 50 μL
QIAamp [®] DNA Mini Kit*		51304	Specimen: 200 μL
	QIAGEN	51504	Elution: 50 μL
Ribo_spin vRD**	GeneAll	302-150	Specimen: 200 μL
(Viral RNA/DNA Extraction Kit)	GeneAli	SG1701***	Elution: 50 μL

* Process lysis step using 180 μL of ATL buffer instead of AL buffer in case of SurePath[™] media.

** Ribo_spin vRD kit is not compatible with SurePath[™] media.

*** Please use catalog numbers shown above to purchase products from Seegene Inc.

C. Automated Extraction System

Note: Please use the recommended specimen and elution volumes as indicated below. For others, refer to the manufacturer's manual.

C-1. NucliSENS® easyMAG®

Note: See NucliSENS® easyMAG® operation manual.

Automated Extraction System	Manufacturer	REF	Recommended Vol.
NucliSENS [®] easyMAG [®]	bioMérieux	200111	Specimen: 200 μL
	Diometieux	200111	Elution: 100 μL

C-2. Microlab NIMBUS IVD

Note: See Microlab NIMBUS IVD operation manual.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Microlab NIMBUS IVD	Hamilton	65415-02*	-
STARMag 96 X 4 Universal	Soogono	744300.4.	Specimen: 300 μL
Cartridge Kit	Seegene	UC384	Elution: 100 μL

*Please use catalog numbers shown above to purchase products from Seegene Inc.

C-3. Microlab STARlet IVD

Note: See Microlab STARlet IVD operation manual.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Microlab STARlet IVD	Hamilton	173000-	
MICTORD STARIELTVD	Hamilton	075*	-
STARMag 96 X 4 Universal	Soogono	744300.4.	Specimen: 300 µL
Cartridge Kit	Seegene	UC384	Elution: 100 μL

*Please use catalog numbers shown above to purchase products from Seegene Inc.

C-4. Seegene NIMBUS

Note: See Seegene NIMBUS operation manual.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Seegene NIMBUS	Seegene	65415-03	-
STARMag 96 X 4 Universal	Sectors	744300.4.	Specimen: 300 µL
Cartridge Kit	Seegene	UC384	Elution: 100 μL

C-5. Seegene STARlet

Note: See Seegene STARlet operation manual.

Automated Extraction System	Manufacturer	Cat. No.	Recommended Vol.
Seegene STARlet	Seegene	67930-03	-
STARMag 96 X 4 Universal	Soogono	744300.4.	Specimen: 300 μL
Cartridge Kit	Seegene	UC384	Elution: 100 μL

Option: Automated Linkage Structure (See AIOS operation manual)

Automated Linkage Structure	Manufacturer	Cat. No.
AIOS	Seegene	SG72100

Note: Replace the cap of the Positive Control (PC) and Standard DNA (SD) with a pierceable cap. After finishing the operation, replace the cap of the Positive Control (PC) and Standard DNA (SD) with the original cap.

Note: The pierceable cap is a single-use product and must be disposed of after one use.

Note: If used with AIOS, this product can be used for maximum 3 separate runs.

3. Preparation for Real-time PCR

Note: Correct tubes and caps must be used (see MATERIALS REQUIRED BUT NOT PROVIDED).

Note: Aerosol resistant filter tips and tight gloves must be used when preparing PCR reactions.

Use extreme care to prevent cross-contamination.

Note: Completely thaw all reagents on ice.

Note: Spin down the reagent tubes to collect residual drops inside of the cap.

Note: The steps A~D are automatically processed on Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS and Seegene STARlet. Refer to each operation manual.

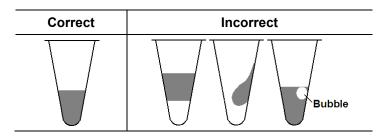
A. Prepare PCR Mastermix.

5 μL	VS MOM
5 μL	EM1
5 μL	RNase free water
15 μL	Total volume of PCR Mastermix

Note: Calculate the total amount of each reagent needed based on the number of reactions (samples + controls + standard DNAs).

- **B.** Mix by quick vortexing, and briefly centrifuge.
- **C.** Aliquot 15 µL of PCR Mastermix into PCR tubes.

D. Add 5 μ L of each sample's nucleic acids into the tube containing PCR Mastermix.


15 μL	PCR Mastermix
5 μL	Sample's nucleic acid
20 μL	Total volume of reaction

E. Close and spin down the PCR tubes.

F. Verify that the liquid containing all PCR components is at the bottom of each PCR tube. If not, centrifuge again at a higher rpm for a longer time.

Note: It is recommended to spin down the PCR tubes before PCR to eliminate air bubbles and collect all residual liquids at the bottom of tubes.

Note: Use a new sterile pipette tip for each sample.

Note: For Negative Control (NC), use $5 \,\mu$ L of RNase-free Water instead of sample's nucleic acid.

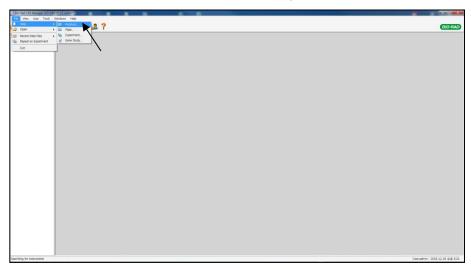
Note: For Positive Control (PC), use 5 μ L of VS PC instead of sample's nucleic acid.

Note: For **Standard DNA (SD)**, use 5 μL of VS SD1, VS SD2 and VS SD3 instead of sample's nucleic acid.

Note: Location of Negative Control, Positive Control and Standard DNA are set in the Microlab NIMBUS IVD, Microlab STARlet IVD, Seegene NIMBUS and Seegene NIMBUS in accordance with the number of samples.

Note: Please be careful not to cross-contaminate the PCR Mastermix and samples with Positive Control and the Standard DNA.

Note: Do not label the reaction tube on its cap. Fluorescence is detected from the top of each reaction tube.


REAL-TIME PCR INSTRUMENT SET UP AND RESULTS ANALYSIS

1. CFX96[™] Real-time PCR Detection System (CFX Manager[™] Software-IVD v1.6)

1.1. Real-time PCR Instrument set up

Note: CFX96[™] Real-time PCR Detection System (Bio-Rad) experiment setup can be divided into three steps: Protocol Setup, Plate Setup, and Start run.

A. Protocol Setup

1) In the main menu, select File \rightarrow New \rightarrow Protocol to open Protocol Editor.

Fig. 1. Protocol Setup.

Step	No. of cycles	Temperature	Duration
1	1	50°C	4 min
2	1	95°C	15 min
3		95°C	30 sec
4	5	60°C	1 min
5		72°C	30 sec
6		GOTO 3, 4 more time	s
7		95°C	10 sec
8*	40	60°C	1 min
9*		72°C	10 sec
10		GOTO 7, 39 more time	es

2) In Protocol Editor, define the thermal profile as follows:

Note*: Plate Read at Step 8 and 9. Fluorescence is detected at 60°C and 72°C.

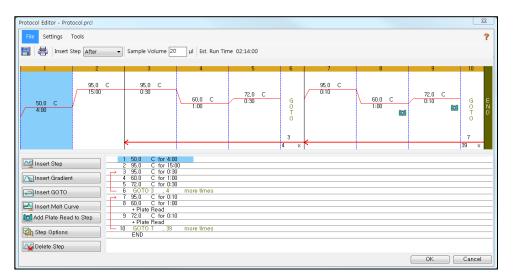


Fig. 2. Protocol Editor

- 3) Click the box next to **Sample Volume** to directly input 20 μ L.
- 4) Click **OK** and save the protocol to open the **Experiment Setup** window.

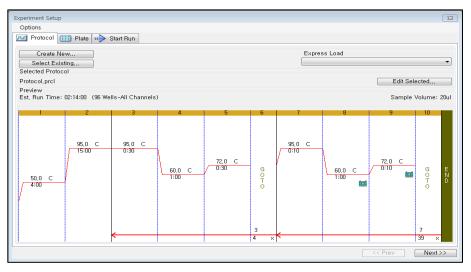


Fig. 3. Experiment Setup: Protocol

B. Plate Setup

Optio	ns											
)Plate	Start Bun									
			otait naii									
	Create New								oress Load			
	elect Existin	<u>g \</u> \						Qu	ckPlate_96 v	/ells_All Cha	nnels,pitd	
	ted Plate	Is_All Chann								_	Edit Sele	
Previe		is_All Chann	ieis,pita								Edit Sele	30180
	ophores:	FAM, H	IEX, Texas F	Red, Cv5, Qu	Jasar 705			Plate Type	BR Clear	s	can Mode: .	All Channel
	1	2	3	4	5	6	7	8	9	10	11	12
А	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
в	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
С	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
G	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
н	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk

Fig. 4. Plate Editor.

2) Click Select Fluorophores to indicate the fluorophores (FAM, HEX, Cal Red 610 and Quasar 670) that will be used and click OK.

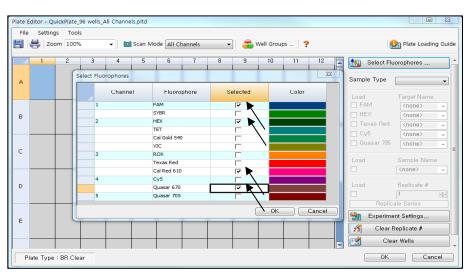


Fig. 5. Select Fluorophores (FAM, HEX, Cal Red 610 and Quasar 670)

3) Creating a Standard Curve

- Select the wells loaded with Sample Type/Standard, designate a specific fluorophore (FAM, HEX, Cal Red 610, and Quasar 670) and then click the Load checkbox (Fig. 6).

- Select the wells in the plate diagram and click Replicate Series. Then Replicate Series editing window will be opened (Fig. 7).

- Select the wells that have been assigned consecutive replicate numbers and click Dilution Series. Then input Dilution Series window as shown in Fig. 8.

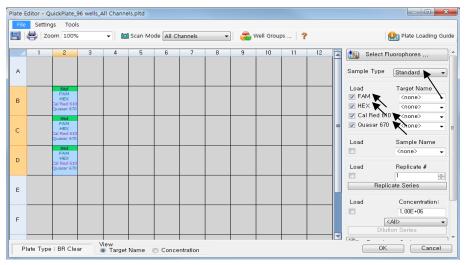


Fig. 6. Creating a Standard Curve (1)

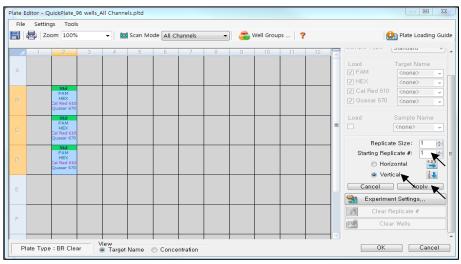


Fig. 7. Creating a Standard Curve (2)

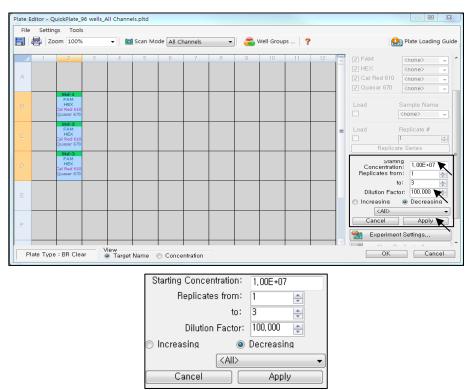


Fig. 8. Creating a Standard Curve (3)

4) Select the wells where the PCR tube will be placed and select its sample type from the **Sample Type** drop-down menu.

- Unknown: Clinical samples
- Negative Control
- Positive Control
- Standard DNA

5) Click on the appropriate checkboxes (**FAM**, **HEX**, **Cal Red 610** and **Quasar 670**) to specify the fluorophores to be detected in the selected wells.

6) Type Sample Name and press enter key.

7) In Settings of the Plate Editor main menu, choose the Plate Size (96 wells) and Plate Type (BR White).

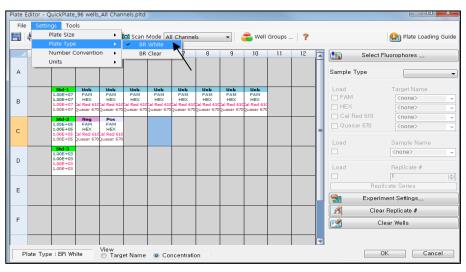


Fig. 9. Plate Setup

- 8) Click **OK** to save the new plate.
- 9) You will be returned to the **Experiment Setup** window.

Experiment Setup											23
Options											
M Protocol	🔋 Plate 🕠	 Start Run 									
Create New Express Load Select Existing QuickPlate_96 wells_All Channels.pltd Selected Plate Selected Plate											
QuickPlate_96 we Preview	ells_All Chanr	nels.pitd							C	Edit Sele	cted
Fluorophores:	FAM, H	IEX, Cal Red	610, Quasa	r 670			Plate Type	BR White	s	ican Mode: .	All Channels
1	2	3	4	5	6	7	8	9	10	11	12
A											
в	Std1	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		
C	Std2	Neg	Pos								
D	Std3										
E											
F											
G											
н											
									_ <<	Prev	Next >>

Fig. 10. Experiment Setup: Plate

¹⁰⁾ Click **Next** to start run.

C. Start Run

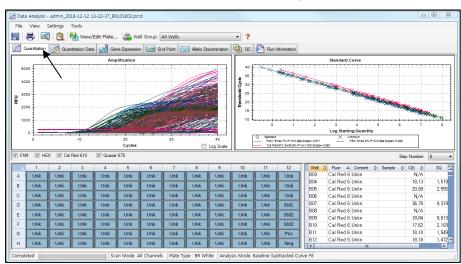
eriment Set	tup				
Options					
Protocol	III Plate III S	tart Run			
	Protocol.prcl	ils_All Channels.pitd			
Notes :			*		
	All Channels Selected Block(s)				
2	Block Name	△ Туре	Run Status	Sample Volume	Protocol ID
CC005		A Type "96FX"	Run Status Idle	Sample Volume 20	Protocol ID
Select All	9373				Protocol ID
Select All	9373	"96FX"	klie		Protocol ID

1) From Start Run tab in Experiment Setup, click Close Lid to close the instrument lid.

Fig. 11. Close Lid.

2) Click Start Run.

3) Store the run file either in My Documents or in a designated folder. Input the file name, click **SAVE**, and the run will start.



1.2. Data Analysis

A. Create folders for data export

To save data for all of amplification curve detection step from the result file, create one folder.
 Folder name may be as desired by user (For 'Seegene Export' function, folders "QuantStep8" and "QuantStep9" are automatically created to save each amplification curve data under the folder created by user).

B. Pre-settings for Data Analysis in CFX Manager

1) After the test, click the Quantitation tab to confirm the amplification curve results.

Fig. 12. Amplification curve results

2) Select **No Baseline Subtraction** from Analysis Mode of Settings menu.

Fig. 13. No Baseline Subtraction

3) Select **Seegene Export** from Tools menu.

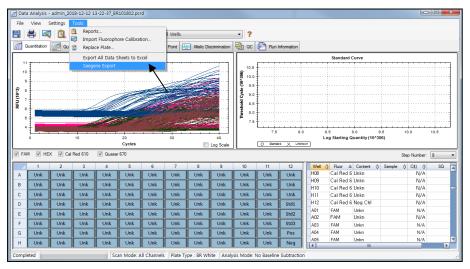


Fig. 14. Seegene Export

4) Choose a location to save data and click OK.

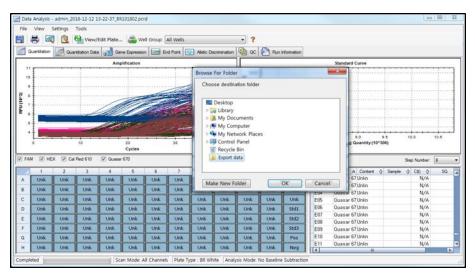
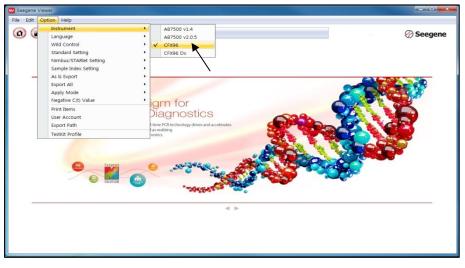



Fig. 15. Seegene Export to designated folder

C. Settings for Data Analysis in Seegene Viewer

1) Open Seegene Viewer program and click **Option** to select **CFX96** in the **Instrument**.

Fig. 16. Seegene Viewer

2) Click **Open** to find the saved file in folder "QuantStep8", open the result file, and select the test kit from the **PRODUCT** menu.

	-	Viewer															
e	Edit	Optio	n He	lp													
0		•	-	4	0	E		-	PRODUCT							l 🔗	Seegen
	admir	n_2018-	12-12	13-22-	-37_BR1	01802	- Qu	antitati	on Ct Resi	ults, xlsx	× 🔳						
	WELL	PLATE							- 0	M WELL	GRAPH						
	1	2 3	4	5	6 7	8	9	10 1	11 12	ER CAM		Cal Red 610	📝 Quasar 67	0		1000	Standard Cur
	-	òò		à	òò		ò			3	M HEA	Car Hed 610	V Guasar or	- E			standard Cur
в	-				22		-	23		0.9				0.9			
2	2						-			0.8				0.8			
-																	
D	-						-			0.6 H 0.5			L L L L L L L L L L L L L L L L L L L	0.6			
=	•						•			0.4				0.4			
F	•	••			• •		•			0.3				0.3			
G		••			• •		•			0.2				0.2			
н	•						•			0.1				0.1			
_			-							0 1	0.1 0.2 0	3 0.4 0.5 0.6 0.	7 0.8 0.9	0 1000	0.1 0.2 0.3	0.4 0.5 0	6 0.7 0.8 0.
) Neg	ative (D Pi	ositive	🕕 In	valid	C	ombine				Cycle (Graph 1)			C	ycle (Grap	oh 2)
	ADDI	Y RESI	н т														
	Well	Info	_				_						Posi	tive Find		 vertica 	al 💿 Horizon
	Sa	mple N	0	Patien	tid	Well		lame	Туре		FAM	HEX	Cal Red 61	0 0	uasar 6	Auto	Interpretation
						A01			SAMPLE								
						B01			SAMPLE								
						C01			SAMPLE								
						D01			SAMPLE								
						E01			SAMPLE								
						F01			SAMPLE								
						G01			SAMPLE								

Fig. 17. Settings for Data Analysis in Seegene Viewer

3) Check the result for each well.

	Help																			
D 🕑 (0		Allpl	ex™ Va	ginitis S	creening	Assay												🔗 Seegen
admin_2018-	2-12 13-22-3	7_BR101	302 - Qua	intitation Ct	Result	s,xisx 🗄	× 🗉													
WELL PLATE					o 뒚	WELL	GRAPH													
1 2 3	4 5	67	8 9	10 11 1	2	FAM	✓ HE×	C C	al Red E	510 💌 Q	uasar 670									🔄 Standard Cu
4 🕘 🕘 🌒						+								_						
B 🕘 🔘 🔘						1250						_	1	30	- 1					Mob
c 🕘 🕘 🌒						1000							IC	25	- 1				1	Lacto
• • • • •) B	750					/			20 215	101					
E 🙆 🖨 🍕					•	500					/			- 10	- 1				1	/
		D O	ŏŏ	ŎŎĞ	5							c	./		- 11					
						250					/	ci	CAC		00					Materia
F 000							303				/	cļ			- 11		_			Mainto
						250	30 <u>3</u>	10	,	20	3	_		5	00		10	/	20	80 Nilainto
	Positive	l Inva				250	30 <mark>3</mark>	· · · 10		20 Sycle (Gra		_	CAC	5	00		10	 ~	20 rcle (Gra	30
F O O O O O O O O O O O O O O O O O O O		l Inva				250	30 <u>3</u>	· · · 10				_	CAC	5	00		10	 		30
F O O O O O O O O O O O O O O O O O O O		1 Inva				250	30 <mark>3</mark>	· · · 10				_	CAC	5	00				rcle (Gra	30 30
F O O O O O O O O O O O O O O O O O O O		1) Inva				250 0 E	0			Sycle (Gra		_	CAC 40		00		Positive	Find [cle (Gra	30
APPLY RESU	LT		lid 🕅 Co	mbine		250	0					_	CAC		00		Positive		cle (Gra	30 aph 2) • Vertical O Horizor
F Negative		Well		Type	CA	250 0 E	0	Qt	co	HEX	ph 1) SV Qt	_	C4C40 40 Cal Re (1)	d 610	00 800	Quasa	Positive 670 C(t)	Find [Quase IC	ar 670 C(t)	30 aph 2) ● Vertical ● Horizon Auto Interpretatio
APPLY RESU Well Info	LT	Well	lid 🕅 Co	Type		250 0 E FA C(t) CA11		Qt u, uu	ço	HEX C(t)	ph 1) SV Qt ц.сэ		C4C 40 Cal Re C(t)	d 610		Quasa	Positive 670 C(t)	Find [Quase IC	ar 670	so aph 2) Vertical O Horizon Auto Interpretation CALGOUGY
APPLY RESU Well Info	LT	Well	lid 🕅 Co	Type	CA CA	250 0 E	M	Qt	ço	HEX C(t) 35.98	ph 1) SV Qt		C4C40 40 Cal Re (1)	d 610	00 800	Quasa	Positive 670 C(t)	Find [Quase IC	ar 670 C(t)	30 Wertical O Horizon Auto Interpretatio Co.GV.AV.Mob
F Negative	LT	Well 1 02 G02	lid 🕅 Co	Type SAMPLE	CA -	250 0.E FA C(t) CATT	M Lacto	Qt 0.00 N/A	co 	HEX C(t) 35,98 N/A	6,9		Cal Re Cal Re C(t) N/A	d 610 AV +	00 0 B00 0	Quasar Mob +	Positive 670 C(t) 32,91	Find [Quase IC	rcle (Gra ar 670 C(t) 22,79	Vertical Horizon Vertical Horizon Co.Gu.Av.Mob CA.Lacto.GV.Mo
Negative Negative Well Info Sample No	LT	Well 1 02 G02 H02	lid 🕅 Co	Type SAMPLE SAMPLE	CA - +	250 0.Ε ΓΑ C(t) C.ζ // Ν/Α 22,79	M Lacto - +	Qt 0,00 N/A 4,34	co 	HEX C(t) 35.98 N/A	ph 1) av Qt + 6,9 + 5,07		Cal Re C(t) 12/ n N/A N/A	d 610 AV + -	00 0 B00 0 0 0	Quasar Mob +	Positive 670 C(t) 32,91 36,71	Find Quase IC +	rcle (Gra ar 670 22,79 21,17	30 apph 2) ● Vertical ⊝ Horizor Auto Interpretatio

Fig. 18. Test result on Seegene Viewer

- 4) Validity Criteria of Control Results
 - a. Valid Assay Run

To confirm the validity of experiments, the PCR runs should be accompanied with PC (Positive Control) and NC (Negative Control). Assay run is determined as valid when all of the following criteria are met:

				S	Seegene	Viewer R	esult			
	FAM		HEX		Cal Red 610		Quasar670			
Control	CA	Lacto	со	GV	ΤV	AV	Mob	IC	Auto Interpretation	
	Ct	Qt	Ct	Qt	Ct	Qt	Ct	Ct		
Positive Control	≤ 40	> 0	≤ 40	> 0	≤ 40	> 0	≤ 40	≤ 40	Positive Control(+)	
Negative Control	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Negative Control(-)	

b. Invalid Assay Run

In cases of a validity failure, the results should not be interpreted or reported, and the PCR reaction must be repeated.

2. CFX96[™] Dx System (CFX Manager[™] Dx Software-IVD v3.1)

2.1. Real-time PCR Instrument set up

Note: CFX96[™] Dx System (Bio-Rad) experiment setup can be divided into three steps: Protocol Setup, Plate Setup, and Start run.

A. Protocol Setup

1) In the main menu, select File \rightarrow New \rightarrow Protocol to open Protocol Editor.

CFx Manager Dx (admin)				
FUE View User Run Tools	Windows Help			
CfX Manager Dx (admin) File View User Run Tools New Open	• 🖾 Protocol	1		BIO FLAD
Open	+ 🛄 Pate.			
· 🥑 Recent Data Files	el Gene Study			
i Repeat a Run		` \		
Brit	_	`		
Searching for instrument(s)				Useradmin 12/26/2018 22:01
a contractor				

Fig. 1. Protocol Setup.

Step	No. of cycles	Temperature	Duration
1	1	50°C	4 min
2	1	95°C	15 min
3		95°C	30 sec
4	5	60°C	1 min
5		72°C	30 sec
6		GOTO 3, 4 more time	S
7		95°C	10 sec
8*	40	60°C	1 min
9*		72°C	10 sec
10		GOTO 7, 39 more time	es

2) In Protocol Editor, define the thermal profile as follows:

Note*: Plate Read at Step 8 and 9. Fluorescence is detected at 60°C and 72°C.

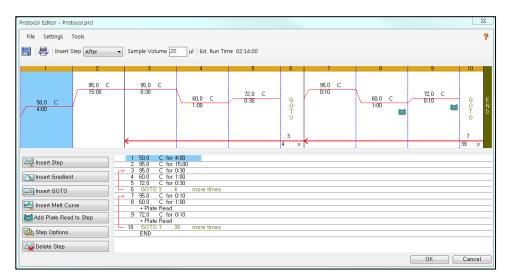


Fig. 2. Protocol Editor

- 3) Click the box next to **Sample Volume** to directly input 20 μ L.
- 4) Click **OK** and save the protocol to open the **Run Setup** window.

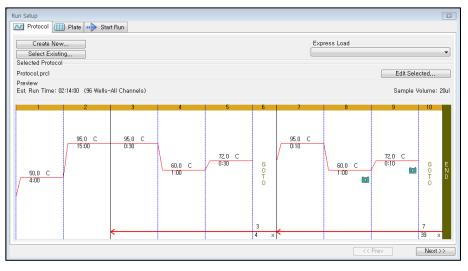


Fig. 3. Run Setup: Protocol

B. Plate Setup

_		<u></u>										
Create New Express Load												
Select Existing QuickPlate_96 wells_All Channels.pltd												
		\										
QuickPlate.96 wells_All Channels.pltd Edit Selected Preview												
Fluorophores: FAM, HEX, Texas Red, Cy5, Quasar 705 Plate Type: BR Clear Scan Mode: All Chann												
	1	2	3	4	5	6	7	8	9	10	11	12
A	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
в	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
С	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
F	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
G	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
н	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk

Fig. 4. Plate Editor.

2) Click Select Fluorophores to indicate the fluorophores (FAM, HEX, Cal Red 610 and Quasar 670) that will be used and click OK.

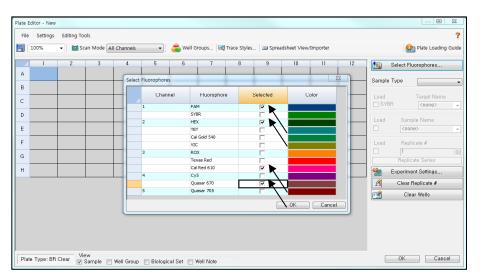


Fig. 5. Select Fluorophores (FAM, HEX, Cal Red 610 and Quasar 670)

3) Creating a Standard Curve

- Select the wells loaded with Sample Type/Standard, designate specific fluorophores (FAM, HEX, Cal Red 610, and Quasar 670) and then click the Load checkbox (Fig. 6).

- Select the wells in the plate diagram and click Replicate Series. Then Replicate Series editing window will be opened (Fig. 7).

- Select the wells that have been assigned consecutive replicate numbers and click Dilution Series. Then input Dilution Series window as shown in Fig. 8.

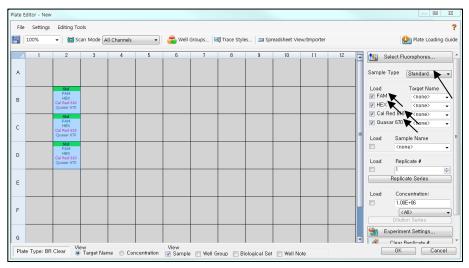


Fig. 6. Creating a Standard Curve (1)

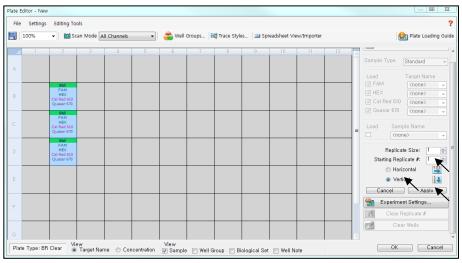


Fig. 7. Creating a Standard Curve (2)

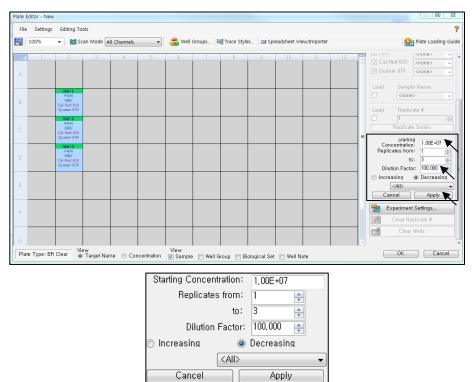


Fig. 8. Creating a Standard Curve (3)

4) Select the wells where the PCR tube will be placed and select its sample type from the **Sample Type** drop-down menu.

- Unknown: Clinical samples
- Negative Control
- Positive Control
- Standard DNA

5) Click on the appropriate checkboxes (**FAM**, **HEX**, **Cal Red 610** and **Quasar 670**) to specify the fluorophores to be detected in the selected wells.

6) Type Sample Name and press enter key.

7) In Settings of the Plate Editor main menu, choose the Plate Size (96 wells) and Plate Type (BR White).

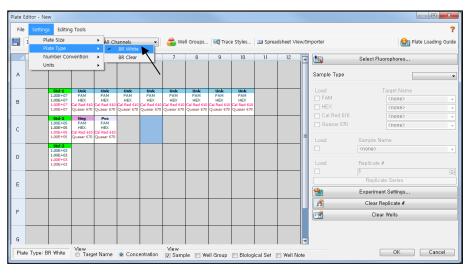


Fig. 9. Plate Setup

- 8) Click **OK** to save the new plate.
- 9) You will be returned to the Run Setup window.

Run Setup												
Protocol III Plate III Start Run												
Create New									Express Load			
Select Existing												
Selected Plate QuickPlate_96 wells_All Channels.pltd Edit Selected												
Preview												
Fluorophores: FAM, HEX, Cal Red 610, Quasar 670 Plate Type: BR White Scan Mode: All Char												
	1	2	3	4	5	6	7	8	9	10	11	12
A												
в		Std1	Unk	Unk								
С		Std2	Neg	Pos								
D		Std3										
F												
F												
G												
н												
	<pre></pre>											

Fig. 10. Run Setup: Plate

¹⁰⁾ Click **Next** to start run.

C. Start Run

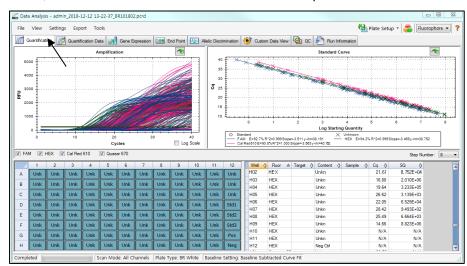
Run Setup					83						
Protocol IIII Plate III Start Run											
	Run Information Protocol: Protocol.prcl										
	Plate: QuickPlate 96 wells All Channels.pltd										
Notes:											
					-						
Scan Mode:											
Start Run on S	Selected Block(s)										
	Block Name 🛛 🛆	Туре	Run Status	Sample Volume	ID/Bar Code						
BR10	1661	"96FX"	Idle	20							
	Image: Select All Blocks Image: Flash Block Indicator Image: Close Lid										
					Start Run						
					<< Prev Next >>						

1) From Start Run tab in Run Setup, click Close Lid to close the instrument lid.

Fig. 11. Close Lid.

2) Click Start Run.

3) Store the run file either in My Documents or in a designated folder. Input the file name, click **SAVE**, and the run will start.



1.2. Data Analysis

A. Create folders for data export

To save data for all of amplification curve detection step from the result file, create one folder.
 Folder name may be as desired by user (For 'Seegene Export' function, folders "QuantStep8" and "QuantStep9" are automatically created to save each amplification curve data under the folder created by user).

B. Pre-settings for Data Analysis in CFX Manager[™]

1) After the test, click the Quantification tab to confirm the amplification curve results.

Fig. 12. Amplification curve results

2) Select No Baseline Subtraction from Baseline Setting of Settings menu.

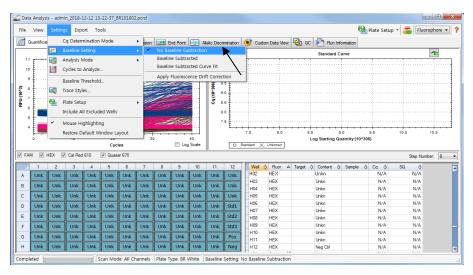


Fig. 13. No Baseline Subtraction

3) Select Seegene Export from Export menu.

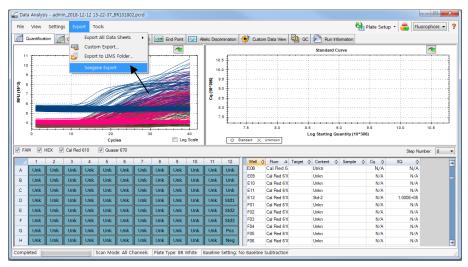


Fig. 14. Seegene Export

4) Choose a location to save data and click OK.

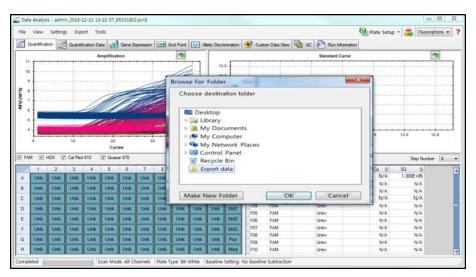
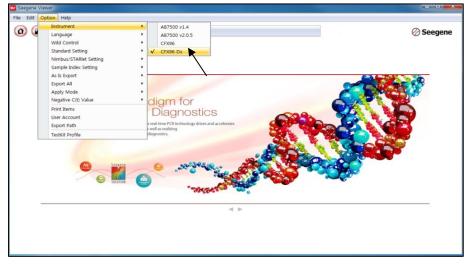



Fig. 15. Seegene Export to designated folder

C. Settings for Data Analysis in Seegene Viewer

1) Open Seegene Viewer program and click **Option** to select **CFX96 Dx** in the **Instrument**.

Fig. 16. Seegene Viewer

2) Click **Open** to find the saved file in folder "QuantStep8", open the result file, and select the test kit from the **PRODUCT** menu.

See	egene	Viewer															
le	Edit	Option	Help														
0) (2			-	•	PRODUCT			×				S	Seege	ene
	admi	n_2018-1	2-12 13-2	22-37_E	3R10180	2 - Qu	antitatio	on Ct Resu	its,xisx >	(😐							
	WELL	PLATE						(L	MELL .	GRAPH							
	1	2 3	4 5	6	7 8	9	10 1	1 12	EAM		Cal Red 610) 🔽 Quasar	670		1001	Standard C	
\$		òò		Ň	òò	Ň			3		Car Hed ord) 🕑 Quasar				Standard C	un
3		22			22		22		0.9				0.9				-
2	-				23		22		0.8				0.8				-
-																	
D									E 0.5				E 0.5				
	•								0.4				0.4				_
F	•	••					•		0.3				0.3				-
G		••							0.2				0.2				-
н	•								0.1				0.1				
_				-					0] 0	1 0.2 0	3 0.4 0.5 0.6 0	0.7 0.8 0.9	0	0.1 0.2 0.3	0.4 0.5 0	6 0.7 0.8	0.9
-) Neg	jative	Positiv	/e 🛄) Invalid	C	ombine				Cycle (Graph 1)		C	ycle (Grap	h 2)	
2	ADDI	Y RESU	т														
			- 1									_					
	Well	Info										P	ositive F	ind 📼 🞑	 Vertica 	al 💿 Horiz	on
	Sa	mple No	Patie	ent Id	Well	N	lame	Туре		АМ	HEX	Cal Red	610	Quasar 6	Auto	Interpreta	tior
					A01			SAMPLE									_
			_		B01			SAMPLE									_
					C01			SAMPLE									_
			_		D01	_		SAMPLE									_
					E01			SAMPLE									_
	1				F01			SAMPLE									
					G01			SAMPLE									

Fig. 17. Settings for Data Analysis in Seegene Viewer

3) Check the result for each well.

	Help																				-
a) 🕑 (c		C	- 1				creening	Assay													🔗 Seegen
admin_2018-1	2-12 13-22-3	7_BR101	802 - Qua	ntitation Ct	Results	, xlsx 🗄	× 🗉														
WELL PLATE						WELL	GRAPH														
1 2 3	4 5	67	8 9	10 11 1	2	FAM	📝 HEX	V C	al Red	610 👽	Quasi	ir 670									🗐 Standard Cu
A 🔴 🔴 🍯						+								-	300	.1					
B 🥘 🕘 🧕						1250						/		1	250						Mob 州
: 🔴 🔴 🍯						1000							H	с		-					Lacto
					E (750					_/				200 E 150	1					
) "	500					/					- 11				/	
F 🙆 🏟 🏟											/		CA	/	100				-/		/
					5	250	_			/	/			AC	50				/		Mader
						250 0 E	103			/	/	-	×	AC_		0 803		_	/	_	Main
ŎŎŎ							03			20		30		40				10		20	30
	Positive	l nva	lid III co	mbine			03	1		20 Sycle (G	raph 1)	30						10	Cycl	20 e (Grap	30
H O O O	-	l Inva	lid 🖾 Co	mbine			80 <mark>3</mark>	· · · 17			raph 1)	30						10	Cycl		30
H 🙆 🍎 d	-	1 Inva	ilid 🛄 co	mbine			10 3				raph 1)	30					Po	10		e (Grap	30 · · · · · · · · · · · · · · · · · · ·
Negative	LT						0					30			-		Po	sitive F		e (Grap	30 h 2) Vertical Horizon
Negative	-	U Inva	Name	Type	CA	0 E	м	Qt	c	Cycle (G	x			40 Cal Re	d 610	9 903	Quasa	sitive F r 670	ind 📰 Quasa	e (Grap	30 h 2) Vertical Horizon Auto Interpret
H Negative	LT	Well		Type		0 E	0	Qt		HE C(t)		Qt U.L3		40 Cal Re C(t)	-			c(t)	ind 🛄 Quase IC	e (Grap)	30 Vertical Horizon Auto Interpret CALacuud
Negative APPLY RESU Well Info Sample No	LT	Well 1 02 G02		Type SAMPLE SAMPLE	-	0 . Е FA C(t) L-A ! /	M Lacto	Qt 0.00 N/A	co 	HE C(1) 19/19 35,98	x	Qt 0.43	TV	40 Cal Re C(t)	d 610 AV -	Qt 6,17	Quasa	sitive F r 670 C(t) 32,91	ind 📖 Quase IC	e (Grap) ar 670 C(t) 20, 70 22, 79	30 • Vertical • Horizon Auto Interpret CO.GV.AV.M
Negative	LT	Well 1 02 G02 H02		Type SAMPLE SAMPLE SAMPLE	•	6.1E FA C(t) 2.3, 17 N/A 22, 79	м	Qt 0.00 N/A 4,34	CO 	HE C(t) 19/10 35,98 N/A	x	Qt 0.23 6.9 5.07		40 Cal Re C(t) N/A N/A	nd 610 AV + =	Qt 6,17 N/A	Quasa	sitive F r 670 C(t) 32,91 36,71	ind E Quase IC +	e (Grap) ar 670 C(t) 22,79 21,17	30 • Vertical • Horizon Auto Interpret CALLELUU.G CO.GV.AV.M CALLacto.GV.I
Negative APPLY RESU Well Info Sample No	LT	Well 102 602 H02 A03		Type SAMPLE SAMPLE SAMPLE SAMPLE	-	FA C(t) C3, 11 N/A 22, 79 32, 78	M Lacto	Qt 0.00 N/A 4.34 4.99	co 	HE C(t) 35,98 N/A N/A	x	Qt 0,23 6,9 5,07 4,13	TV	40 Cal Re C(t) IV/A N/A N/A	d 610 AV -	Qt 1V/6 6,17 N/A	Quasa	c(t) 32,91 36,71 21,41	ind 📖 Quase IC	e (Grap) ar 670 22,79 21,17 32,05	Vertical Horizon Vertical Horizon Auto Interpret CALacto.GV,1 CALacto.GV,1 CALacto.GV,1
	LT	Well 1 02 G02 H02		Type SAMPLE SAMPLE SAMPLE	•	6.1E FA C(t) 2.3, 17 N/A 22, 79	M Lacto	Qt 0.00 N/A 4,34	CO 	HE C(t) 19/10 35,98 N/A	x	Qt 0.23 6.9 5.07	TV	40 Cal Re C(t) N/A N/A	nd 610 AV + =	Qt 6,17 N/A	Quasa	sitive F r 670 C(t) 32,91 36,71	ind E Quase IC +	e (Grap) ar 670 C(t) 22,79 21,17	

Fig. 18. Test result on Seegene Viewer

- 4) Validity Criteria of Control Results
 - a. Valid Assay Run

To confirm the validity of experiments, the PCR runs should be accompanied with PC (Positive Control) and NC (Negative Control). Assay run is determined as valid when all of the following criteria are met:

				\$	Seegene	Viewer R	esult			
	FAM		HE	HEX		Cal Red 610		ar670		
Control	CA	Lacto	со	GV	ΤV	AV	Mob	IC	Auto Interpretation	
	Ct	Qt	Ct	Qt	Ct	Qt	Ct	Ct		
Positive Control	≤ 40	> 0	≤ 40	> 0	≤ 40	> 0	≤ 40	≤ 40	Positive Control(+)	
Negative Control	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Negative Control(-)	

b. Invalid Assay Run

In cases of a validity failure, the results should not be interpreted or reported, and the PCR reaction must be repeated.

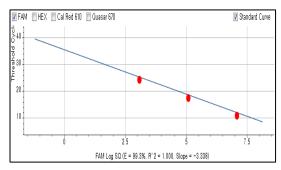
RESULTS

*

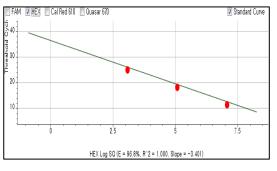
1. Analytes Information

Fluorophore	Anal	lyte
Fluorophore	Graph 1	Graph 2
FAM	Candida albicans (CA)	<i>Lactobacillus</i> spp. * (Lacto)
HEX	<i>Candida</i> others** (CO)	Gardnerella vaginalis (GV)
Cal Red 610	Trichomonas vaginalis (TV)	Atopobium vaginae (AV)
Quasar 670	Internal Control (IC)	<i>Mobiluncus</i> spp.*** (Mob)

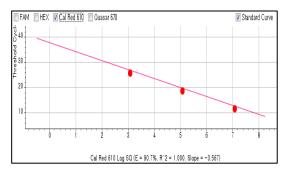
Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus jensenii


** Candida krusei, Candida glabrata, Candida dubliniensis, Candida parapsilosis, Candida tropicalis and Candida lusitaniae

*** Mobiluncus mulieris and Mobiluncus curtisii



2. Standard Curve Information


Lactobacillus spp.

Gardnerella vaginalis

Atopobium vaginae

Analyte	R ²
Lactobacillus spp.	0.980 ~ 1.000
Gardnerella vaginalis	0.980 ~ 1.000
Atopobium vaginae	0.980 ~ 1.000

3. Interpretation of Results

3.1. Auto Interpretation

Analyte	Ct ¹⁾ value	Qt ²⁾ value	Result
CA, CO, TV, Mob	≤ 40	-	Detected (+)
	N/A	-	Not detected (-)
	-	> 0	Detected (+)
Lacto, GV, AV	-	N/A	Not detected (-)
IC	≤ 40	-	Detected (+)
	N/A	-	Not detected (-)

- 1) Ct: Cycle Threshold
- 2) Qt: Quantitative Threshold (Log10)

Result of target = 10^{QT} copies/rxn

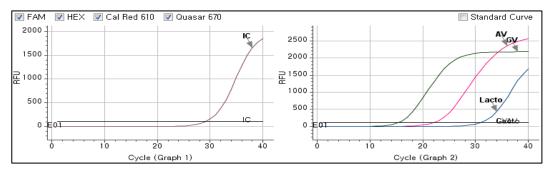
Target	Result	IC Result	Interpretation								
Graph 1	Graph 2	10 Nesult									
+	-		Target Nucleic acid, Detected								
-	+	+									
+	+										
+	-		Target Nucleic acid, Detected*								
-	+	-	- Additional analyte(s) which are not detected may be								
+	+		present.								
-	-	+	Target Nucleic acid, Not detected								
-	-	-	 Invalid** Results suggest inadequate specimen collection, processes or presence of inhibitors. Repeat the test from the nucleic acid extraction using another aliquot of the original specimen. If the same result is shown in the diluted nucleic acid, please collect samples again. 								

* High level of target nucleic acids may cause interference in Internal Control detection and readout. Invalid IC signal do not indicate that the positive results for targets are invalid.

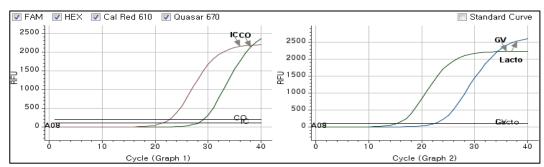
** See TROUBLESHOOTINGS (page 47) for the detailed instruction.

3.2. BV Interpretation

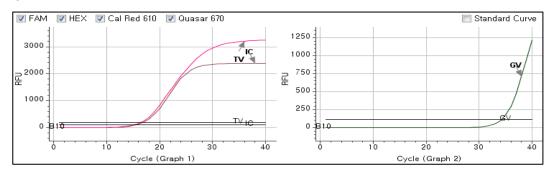
The Seegene Viewer software automatically interprets test results as Normal, Intermediate and Positive of BV status based on the amplification status of target(s).

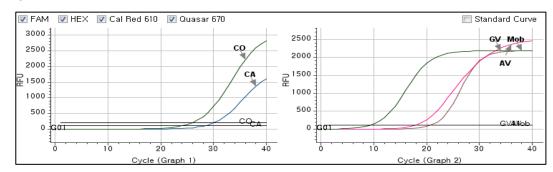

Cut-off determination for Bacterial Vaginosis (BV) interpretation

The results from the retrospective clinical study were used to validate the BV cut-offs for Allplex[™] Vaginitis Screening Assay. For this validation, PCR metrics from vaginosis target analytes and results generated by the BV call algorithm were statistically analyzed in comparison to results from the applicable reference method. ROC curve analysis was performed to confirm the optimal cut-offs for each target analyte as well as for the cut-offs used to determine bacterial vaginosis status.



4. Application to Clinical Samples


Sample 1


Sample 2

Sample 3

Sample 4

										See	gene	Viewe	r Resu	ılt									
Sample		FA	M			HE	EX		(CALR	ed 61(D		Quasa	ar 670		Auto	Auto	Auto	BV		2	т
	CA	Ct	Lacto	Qt	со	Ct	GV	Qt	тν	Ct	AV	Qt	Mob	Ct	IC	Ct	Interpretation	Interpretation	CA	0	IV		
1	-	N/A	+	1.43	-	N/A	+	6.27	-	N/A	+	4.48	-	N/A	+	29.31	"Lacto, GV, AV"	Bacterial Vaginosis	-	-	-		
2	-	N/A	+	3.94	+	29.20	+	6.22	-	N/A	-	N/A	-	N/A	+	21.50	"Lacto, CO, GV"	Bacterial Vaginosis	-	со	-		
3	-	N/A	-	N/A	-	N/A	+	0.73	+	16.50	-	N/A	-	N/A	+	16.57	"GV, TV"	Normal*	-	-	τv		
4	+	28.42	-	N/A	+	25.88	+	8.07	-	N/A	+	5.63	+	20.81	-	N/A	"CA, CO, GV, AV, Mob"	Bacterial Vaginosis	CA	со	-		

*: The lack of *Lactobacillus* spp. may be due to the patient being postmenopausal.

TROUBLESHOOTINGS

	Allplex [™] Vaginitis	Screening Assay					
OBSERVATION	PROBABLE CAUSES	SOLUTION					
	The fluorophores for data analysis do not comply with the protocol	Select the correct fluorophores for data analysis.					
	Incorrect setting of real-time thermal cycler	Please check the thermal cycling conditions and repeat the test under correct settings.					
No signal	Incorrect storage or expiration of the test kit	Please check the storage conditions (See page 10) and the expiry date (refer to label) of the test kit and use a new kit if necessary.					
	Nucleic acid extraction failure	Make sure that you use a recommended extraction method.					
	Error in specimen collection	If both target and IC signal were not observed that means specimen collected inappropriately. Recollect the specimen.					
No Internal Control signal	Sampling error or high load of pathogen's nucleic acid	If both target pathogen signal and IC signal are not observed, then collect samples again. If target pathogen signal is observed but not IC, then IC amplification may have been inhibited by high titer of target pathogen. If you want to confirm IC signal, dilute the specimen (1/10~1/100) in saline buffer and repeat the test from extraction step.					
	Presence of PCR Inhibitor	Please dilute the specimen (1/10~1/100) in saline buffer and repeat the test from extraction step.					
Spikes in any cycles of amplification curve	Bubble in the PCR tube	Centrifuge the PCR tube before run.					

	Allplex [™] Vaginitis	Screening Assay					
OBSERVATION	PROBABLE CAUSES	SOLUTION					
Putative false positive or target signals observed in Negative Control	Contamination	Decontaminate all surfaces and instruments with sodium hypochlorite and ethanol. Only use filter tips throughout the procedure and change tips between tubes. Repeat the entire procedure from nucleic acid extraction with the new set of reagents.					
	Error in specimen collection	Please check the specimen collection method and re-collect the specimen.					
	Incorrect storage of the specimen	Please re-collect the specimen and repeat the entire procedure. Ensure that the specimen is stored as recommended.					
Putative false	Error in nucleic acid extraction	Please check the nucleic acid extraction procedure as well as nucleic acid concentration, and re-extrac the nucleic acid.					
negative or no signal observed in Positive Control	Error in adding nucleic acid to corresponding PCR tubes	Check the sample numbers of tubes containing nucleic acid and make sure to add nucleic acid into the correct PCR tubes and carefully repeat the test if necessary.					
	Presence of inhibitor	Please dilute the specimen (1/10~1/100) in saline buffer and repeat the test from extraction step.					
	Incorrect PCR mixture	Confirm that all components are added to the PCR mixture (Sensitivity is compromised with pre- composed premix). All reagents must be homogenized and spun down before use.					
Putative False Standard DNA	Incorrect storage of the standard DNA	Please check the storage conditions (See page 10) and the expiry date (refer to label) of the test kit and use a new kit if necessary.					
signals	R ² < 0.980	Make sure that SD1, SD2 and SD3 are set correctly and correct if necessary. If it does not help, repeat PCR for all samples, SD1, SD2 and SD3.					

PERFORMANCE

1. Specificity

Cross-reactivity of Allplex[™] Vaginitis Screening Assay was tested using 167 standard materials and organisms as indicated below. Specific targets which were designed for the detection were identified by Allplex[™] Vaginitis Screening Assay.

No.	Organism	Source	Isolated No.	Result [†]
1	Atopobium vaginae	КСТС	15240	AV Detected
2	Candida albicans	Geomebiotics	18G-7	CA Detected
3	Candida dubliniensis	КСТС	17427	CO Detected
4	Candida glabrata	KCCM	50044	CO Detected
5	Candida krusei	KCCM	50633	CO Detected
6	Candida lusitaniae	KCCM	50541	CO Detected
7	Candida parapsilosis	KCTC	7653	CO Detected
8	Candida tropicalis	KCCM	32008	CO Detected
9	Gardnerella vaginalis	КСТС	5096	GV Detected
10	Lactobacillus crispatus	КСТС	5054	Lacto Detected
11	Lactobacillus gasseri	KCTC	3163	Lacto Detected
12	Lactobacillus jensenii	КСТС	5194	Lacto Detected
13	Mobilluncus curtisii	ATCC	35241	Mob Detected
14	Mobiluncus mulieris	ATCC	35240D-5	Mob Detected
15	Trichomonas vaginalis	ATCC	30001	TV Detected
16	Acinetobacter baumannii	KCCM	35401	Not Detected
17	Acinetobacter calcoceticus	КСТС	2357	Not Detected
18	Acinetobacter Iwoffii	KCTC	12407	Not Detected
19	Acinetobacter schindleri	КСТС	12409	Not Detected
20	Acinetobacter ursingii	КСТС	12410	Not Detected
21	Actinomyces isrealii	КСТС	9054	Not Detected
22	Aerococcus viridans	ATCC	11563	Not Detected
23	Aeromonas hydrophilia	КСТС	2358	Not Detected
24	Agrobacterium tumefaciens	KCCM	12137	Not Detected
25	Alcaligenes faecalis	KCTC	2678	Not Detected
26	Atopobium minutum	КСТС	5038	Not Detected

No.	Organism	Source	Isolated No.	Result [†]
27	Atopobium parvulum	КСТС	3663	Not Detected
28	Bacillus subtilis	КСТС	1021	Not Detected
29	Bacteroides caccae	ATCC	43185	Not Detected
30	Bacteroides fragilis	КСТС	5013	Not Detected
31	Bacteroides ovatus	КСТС	5827	Not Detected
32	Bacteroides vulgatus	ATCC	8480	Not Detected
33	Bacteroides xylanisolvens	КСТС	15192	Not Detected
34	Bifidobacterium adolescentis	КССМ	11206	Not Detected
35	Bifidobacterium longum	KCCM	11953	Not Detected
36	Bifidobacterium minimum	КСТС	3273	Not Detected
37	<i>Blautia producta(prevot)</i> Liu et al.	ATCC	27340	Not Detected
38	Brevibacterium linens	КСТС	9099	Not Detected
39	Candida orthopsilosis	ATCC	96139	Not Detected
40	Chlamydia trachomatis (LGV I)	ATCC	VR-901BD	Not Detected
41	Chlamydia trachomatis (LGV II)	ATCC	VR-902BD	Not Detected
42	Chlamydia trachomatis (LGV III)	ATCC	VR-903D	Not Detected
43	Chlamydia trachomatis (serovar A)	ATCC	VR-571B	Not Detected
44	Chlamydia trachomatis (serovar B)	ATCC	VR-573	Not Detected
45	Chlamydia trachomatis (serovar Ba)	ATCC	VR-347	Not Detected
46	Chlamydia trachomatis (serovar C)	ATCC	VR-1500	Not Detected
47	Chlamydia trachomatis (serovar D)	ATCC	VR-885	Not Detected
48	<i>Chlamydia trachomatis</i> (serovar E)	ATCC	VR-348B	Not Detected
49	<i>Chlamydia trachomatis</i> (serovar F)	ATCC	VR-346	Not Detected
50	Chlamydia trachomatis (serovar G)	ATCC	VR-878	Not Detected
51	Chlamydia trachomatis (serovar H)	ATCC	VR-879D	Not Detected
52	Chlamydia trachomatis (serovar I)	ATCC	VR-880	Not Detected
53	Chlamydia trachomatis (serovar J)	ATCC	VR-886	Not Detected
54	Chlamydia trachomatis (serovar K)	ATCC	VR-887	Not Detected
55	Chlamydophila pneumoniae	ATCC	VR-1360	Not Detected
56	Chromobacterium violaceum	КСТС	2897	Not Detected
57	Citrobacter freundii	КСТС	2509	Not Detected
58	Clostridium difficile (Toxin A+ / B+)	ATCC	9689D-5	Not Detected
59	Clostridium perfringens	КСТС	3269	Not Detected

No.	Organism	Source	Isolated No.	Result [†]
60	Corynebacterium genitalium	ATCC	33031	Not Detected
61	Corynebacterium xerosis	КСТС	3435	Not Detected
62	Cryptococcus neoformans	KCCM	50564	Not Detected
63	Cytomegalovirus	ATCC	VR-807	Not Detected
64	Deinococcus radiopugnans	ATCC	19172	Not Detected
65	Derxia gummosa	КСТС	12784	Not Detected
66	Enterobacter aerogenes	КСТС	2190	Not Detected
67	Enterobacter cloacae	KCCM	12178	Not Detected
68	Enterococcus avium	ATCC	14025	Not Detected
69	Enterococcus faecalis	ATCC	11700	Not Detected
70	Enterococcus faecium	ATCC	5155951559	Not Detected
71	Epstein Barr Virus	ATCC	VR-1492	Not Detected
72	Escherichia coli	KCCM	11591	Not Detected
73	Gemella haemolysans	ATCC	10379	Not Detected
74	Haemophilus ducreyi	КСТС	2745	Not Detected
75	Haemophilus influenzae	ATCC	51907D	Not Detected
76	Hepatitis A virus	ATCC	VR-1541	Not Detected
77	Hepatitis B virus	ATCC	VR-3232SD	Not Detected
78	Human Herpesvirus 1	KBPV	VR-52	Not Detected
79	Human Herpesvirus 2	KBPV	VR-53	Not Detected
80	Varicella-zoster virus	ATCC	VR-1367	Not Detected
81	Human papillomavirus strain 18	KCLB	10002	Not Detected
82	Kingella denitrificans	ATCC	33394	Not Detected
83	Kingella kingae	ATCC	23330	Not Detected
0.4	Klebsiella pneumoniae subsp.	ATCC	6008	Not Detected
84	rhinoscleromatis	ATCC	6908	Not Detected
85	Lactobacillus acidophilus	KCCM	32820	Not Detected
86	Lactobacillus amylovorus	KCCM	40431	Not Detected
87	Lactobacillus brevis	КСТС	3498	Not Detected
88	Lactobacillus casei	KCCM	12452	Not Detected
89	Lactobacillus delbrueckii subsp. lactis	КСТС	3035	Not Detected
90	Lactobacillus delbrueckii subsp. delbrueckii	КСТС	13730	Not Detected

No.	Organism	Source	Isolated No.	Result ⁺
91	Lactobacillus fermentum	KCCM	40401	Not Detected
92	Lactobacillus gallinarum	KCCM	40987	Not Detected
93	Lactobacillus helveticus	КСТС	15060	Not Detected
94	Lactobacillus hominis DSM 23910	КСТС	21045	Not Detected
95	Lactobacillus iners	CCARM	123	Not Detected
96	Lactobacillus intestinalis	KCCM	40990	Not Detected
97	Lactobacillus johnsonii	KCCM	32825	Not Detected
98	Lactobacillus kalixensis	КСТС	5856	Not Detected
99	Lactobacillus oris	KCCM	40993	Not Detected
100	Lactobacillus parabuchneri	КСТС	3503	Not Detected
101	Lactobacillus pentosus	KCCM	40997	Not Detected
102	Lactobacillus plantarum	ATCC	700934	Not Detected
103	Lactobacillus reuteri	KCCM	40717	Not Detected
104	Lactobacillus rhamnosus	KCCM	32405	Not Detected
105	Lactobacillus salivarius subsp. salicinius	KCCM	40998	Not Detected
106	Lactobacillus sanfrancisensis	ATCC	27651	Not Detected
107	Lactobacillus ultunensis	КСТС	5857	Not Detected
108	Lactobacillus vaginalis	КСТС	41001	Not Detected
109	Legionella pneumophila	KCCM	41781	Not Detected
110	Micrococcus luteus	КСТС	3063	Not Detected
111	Moraxella catarrhalis	KCCM	42707	Not Detected
112	Moraxella osloensis	ATCC	19976	Not Detected
113	Morganella morganii subsp. morganii	KCCM	11497	Not Detected
114	Mycobacterium smegmatis	КСТС	9108	Not Detected
115	Mycoplasma arginini	ATCC	23838D	Not Detected
116	Mycoplasma felis Cole et al.	ATCC	23391	Not Detected
117	Mycoplasma genitalium	ATCC	33530	Not Detected
118	Mycoplasma hominis	ATCC	27545-TTR	Not Detected
119	<i>Mycoplasma iowae</i> Jordan et al.	ATCC	33552	Not Detected
120	Mycoplasma leonicaptivi Hill	ATCC	49890	Not Detected
121	Mycoplasma pneumoniae	ATCC	15531	Not Detected

NO.	Organism	Source	Isolate No.	Result [†]
122	Mycoplasma pulmonis	ATCC	19612	Not Detected
123	Mycoplasma spumans	ATCC	19526	Not Detected
124	Neisseria cinerea	ATCC	14685	Not Detected
125	Neisseria elongata	КСТС	23361	Not Detected
126	Neisseria flavescens	ATCC	13120	Not Detected
127	Neisseria gonorrhoeae	ATCC	700825	Not Detected
128	Neisseria lactamica	ATCC	23970	Not Detected
129	Neisseria meningitidis	KCCM	41562	Not Detected
130	Neisseria mucosa	ATCC	19696	Not Detected
131	Neisseria perflava	ATCC	10555	Not Detected
132	Neisseria polysaccharea	ATCC	43768	Not Detected
133	Neisseria sicca	ATCC	29256	Not Detected
134	Neisseria subflava	ATCC	19243	Not Detected
135	Paracoccus denitrificans	КСТС	2530	Not Detected
136	Peptostreptococcus anaerobius	ATCC	49031D-5	Not Detected
137	Prevotella bivia	КСТС	5454	Not Detected
138	Prevotella buccalis	КСТС	5496	Not Detected
139	Prevotella disiens	КСТС	5499	Not Detected
140	Prevotella intermedia	КСТС	5692	Not Detected
141	Prevotella melaninogenica	КСТС	5457	Not Detected
142	Propionibacterium acnes	КСТС	3314	Not Detected
143	Proteus mirabilis	ATCC	12453	Not Detected
144	Providencia stuartii	КСТС	2568	Not Detected
145	Pseudomonas aeruginosa	KCCM	11328	Not Detected
146	Pseudomonas putida	КСТС	1643	Not Detected
147	Rahnella aquatilis	КСТС	2863	Not Detected
148	Rhodospirillum rubrum	КСТС	1372	Not Detected
149	Saccharomyces cerevisiae	KCCM	50511	Not Detected
150	Salmonella enteritidis	КССМ	12021	Not Detected
151	Salmonella typhimurium	КССМ	40253	Not Detected
152	Staphylococcus aureus	КСТС	1621	Not Detected
153	Staphylococcus epidermidis	ATCC	12228	Not Detected
154	Streptococcus agalactiae	KCCM	40417	Not Detected

NO.	Organism	Source	Isolate No.	Result [†]
155	Streptococcus bovis	KCCM	40409	Not Detected
156	Streptococcus mitis	КСТС	5650	Not Detected
157	Streptococcus mutans	КСТС	3065	Not Detected
158	Streptococcus pneumoniae	ATCC	BAA-255D	Not Detected
159	Streptococcus pyogenes	ATCC	19615	Not Detected
160	Streptococcus salivarius	KCCM	11926	Not Detected
161	Streptococcus sanguinis	КСТС	3299	Not Detected
162	Treponema pallidium	ATCC	BAA-2642SD	Not Detected
163	Trichomonas tenax	ATCC	30207	Not Detected
164	Ureaplasma parvum	ATCC	27818	Not Detected
165	Ureaplasma urealyticum	ATCC	27816	Not Detected
166	Vibrio parahaemolyticus	КСТС	2471	Not Detected
167	Yersinia enterocolitica	ATCC	23715	Not Detected

[†] Specificity tests were repeated 3 times.

ATCC: American Type Culture Collection
 ZMC : ZeptoMetrix Corporation
 KCTC : Korean Collection for Type Culture
 KCCM : Korean Culture Center of Microorganisms
 KCLB: Korean Cell Line Bank

2. Sensitivity

The sensitivity is defined as the lowest concentration of organism that can be consistently detected ($\geq 95\%$ of positive results among all tested sample). It was confirmed when the correct organism/assay results were obtained from at least 30 of the 30 samples (30/30 = 100%) tested. The sensitivity of AllplexTM Vaginitis Screening Assay was determined using target plasmid DNAs. Detection limit for AllplexTM Vaginitis Screening Assay was 100 copies/reaction.

3. Reproducibility

The reproducibility panel of 21 simulated analytes was prepared that included High negative (0.1 X LoD), Low positive (1X LoD) and Moderate positive (3X LoD) samples. At each testing site, the panel was tested for five days, two runs per day by two different operators and triplicate of each panel per run. It was tested with a single lot of AllplexTM Vaginitis Screening Assay at three different sites and three lots at one in-house site. The positive rates were observed for each analyte for reproducibility study: 100.00% for Moderate positive samples, \geq 100.00% for Low positive samples and \geq 79.33% for High negative samples.

The reproducibility of the Allplex[™] Vaginitis Screening Assay was evaluated among sites, product lots and experimenters. The results were satisfied with the criteria set above, thus confirming the reproducible performances of Allplex[™] Vaginitis Screening Assay.

4. Interfering substances

This test was conducted using interfering substances composed of 4 substances in order to confirm the performance of the Allplex[™] Vaginitis Screening Assay in the presence of potential interfering substances. There was no effect on the result by adding the substances: non-specific detection or inhibition on target amplification. Based on the results, 4 interfering substances had no effect on Allplex[™] Vaginitis Screening Assay results.

No.	Interfering substances	Concentration
1	Human whole blood	2.5 % (v/v)
2	Albumin (BSA)	60 g/L
3	Bilirubin	342 µmol/L
4	Mucus	-

REFERENCES

- Bai G, Gajer P, Nandy M, Ma B, Yang H, Melissa N, Bing M, Hongqiu Y and Joyce So [Comparison of Storage Conditions for Human Vaginal Microbiome Studies]. PLoS ONE. (2012) 7(5): e36934
- J.Y. Chun, K.J. Kim, I. T. Hwang, Y. J. Kim, D. H. Lee, I. K. Lee, and J. K. Kim [Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene.] Nucleic Acids Res. (2007) 35(6): e40
- 3. D. H. Lee. [TOCE: Innovative Technology for High Multiplex Real-time PCR.] Seegene Bulletin. (2012) 1: 5-10
- David N. Fredricks, Tina L. Fiedler, and Jeanne M. Marrazzo, M.P.H. [Molecular Identification of Bacteria Associated with Bacterial Vaginosis.] N Engl J Med. (2005) 353(18): 1899-911
- Jane Mashburn, CNM, MN and FACNM [Etiology, Diagnosis, and Management of Vaginitis] Journal of Midwifery & Women's Health. (2006) 51: 423-430
- Jason D. Mintz and Mark G. Martens [Prevalence of Non-Albicans Candida Infections in Women with Recurrent Vulvovaginal Symptomatology] Advances in Infectious Diseases. (2013) 3: 238-242
- 7. J. Y. Chun. [High Multiplex Molecular Diagnostics.] Seegene Bulletin. (2012) 1: 1-4.
- K.M.G.R. Branco, R.M.D. Nardi, J.L.S. Moreira, A.C. Nunes, L.M. Farias, J.R. Nicoli and M.A.R. Carvalho. [Identification and in vitro production of Lactobacillus antagonists from women with or without bacterial vaginosis] Braz J Med Biol Res. (2010) 43(4): 338-344.
- Lori Newman, Jane Rowley, Stephen Vander Hoorn, Nalinka Saman Wijesooriya, Magnus Unemo, Nicola Low, Gretchen Stevens, Sami Gottlieb, James Kiarie and Marleen Temmerman [Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting] PLoS ONE. (2015) 10(12): e0143304
- Sujatha Srinivasan, Congzhou Liu, Caroline M. Mitchell, Tina L. Fiedler, Katherine K. Thomas, Kathy J. Agnew, Jeanne M. Marrazzo and David N. Fredricks [Temporal Variability of Human Vaginal Bacteria and Relationship with Bacterial Vaginosis.] PLoS ONE. (2010) 5(4): e10197.
- Y. J. Lee, D. Kim, K. Lee, and J. Y. Chun. [Single-channel multiplexing without melting curve analysis in real-time PCR] Scientific Reports. (2014) 4:7439.
- Yarbrough ML and Burnham CA [The ABCs of STIs: An Update on Sexually Transmitted Infection] Clin Chem. (2016) 62(6): 811-23
- 13. Anderson MR, Klink K and Cohrssen A [Evaluation of vaginal complaints] JAMA. (2004) 291(11): 1368-79
- 14. Hainer BL and Gibson MV [Vaginitis] Am Fam Physician. (2011) 83(7): 807-15

KEY TO SYMBOLS

Symbol	Explanation
IVD	In vitro diagnostic medical device
LOT	Batch code
REF	Catalogue number
	Use-by date
	Upper limit of temperature
PRIMER	Oligonucleotide mix for amplification and detection
PREMIX	PCR Master Mix or Detection Mix
WATER	RNase-free Water
CONTROL +	Positive Control (PC)
SD	Standard DNA
Ĩ	Consult instructions for use
••••	Manufacturer
	Date of manufacture
EC REP	Authorized representative in the European Community
Â	Caution
Σ	Contains sufficient for <n> tests</n>
UDI	Unique Device Identifier
rxns	Reaction barcode for automated extraction system

Key to symbols used in the manual and labels.

ORDERING INFORMATION

Cat. No.	Product	Size
Allplex [™] series		
SD10321Z	Allplex [™] Vaginitis Screening Assay	25 rxns
SD9750Y	Allplex [™] Vaginitis Screening Assay	50 rxns
SD9750X	Allplex™ Vaginitis Screening Assay	100 rxns
Accessory produc	st	
SG1701	Ribo_spin vRD (Viral RNA/DNA Extraction Kit)	50 preps
Automated extrac	tion Systems	
65415-02	Microlab NIMBUS IVD	EA
173000-075	Microlab STARIet IVD	EA
65415-03	Seegene NIMBUS	EA
67930-03	Seegene STARlet	EA
744300.4.UC384	STARMag 96 X 4 Universal Cartridge Kit	384T / 1box
SG72100	AIOS	EA